Liu, A.P.Y., Li, B.K., Pfaff, E. et al. Clinical and molecular heterogeneity of pineal parenchymal tumors: a consensus studyActa Neuropathol (2021).

Chung P, et al. Modeling germline mutations in pineoblastoma uncovers lysosome disruption- based therapy. Nat Commun. 2020 Apr 14;11(1):1825.

Reddy A,et al. Efficacy of High-Dose Chemotherapy and Three-Dimensional Conformal Radiation for Atypical Teratoid/Rhabdoid Tumor: A Report From the Children’s Oncology Group Trial ACNS0333. J Clin Oncol. 2020 Apr 10;38(11):1175-1185.

Hoffman LM, Richardson EA, et al. Advancing biology based therapeutic approaches for atypical teratoid rhabdoid tumors. Neuro Oncol. 2020 Jul 7;22(7):944-954.

Ho B, Johann PD, Grabovska Y, et al. Molecular subgrouping of atypical teratoid/rhabdoid tumors-a reinvestigation and current consensusNeuro Oncol. 2020;22(5):613-624. doi:10.1093/neuonc/noz235

Li, B.K., Vasiljevic, A., Dufour, C. et al. Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study. Acta Neuropathol 139, 223–241 (2020).

Sin-Chan P, Mumal I, Suwal T, et al. A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell. 2019;36(1):51-67.e7. doi:10.1016/j.ccell.2019.06.002

Lambo S, Gröbner SN et al. The molecular landscape of ETMR at diagnosis and relapse. Nature. 2019 Dec;576(7786):274-280.

Torchia J, Golbourn B, Feng S, et al. Integrated (epi)-Genomic Analyses Identify Subgroup-Specific Therapeutic Targets in CNS Rhabdoid TumorsCancer Cell. 2016;30(6):891-908. doi:10.1016/j.ccell.2016.11.003

Torchia J, Picard D, Lafay-Cousin L, et al. Molecular subgroups of atypical teratoid rhabdoid tumours in children: an integrated genomic and clinicopathological analysisLancet Oncol. 2015;16(5):569-582. doi:10.1016/S1470-2045(15)70114-2

Spence T, Sin-Chan P, Picard D, et al. CNS-PNETs with C19MC amplification and/or LIN28 expression comprise a distinct histogenetic diagnostic and therapeutic entityActa Neuropathol. 2014;128(2):291-303. doi:10.1007/s00401-014-1291-1

Kleinman CL, Gerges N, Papillon-Cavanagh S, et al. Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMRNat Genet. 2014;46(1):39-44. doi:10.1038/ng.2849

Spence T, Perotti C, Sin-Chan P, et al. A novel C19MC amplified cell line links Lin28/let-7 to mTOR signaling in embryonal tumor with multilayered rosettesNeuro Oncol. 2014;16(1):62-71. doi:10.1093/neuonc/not162

Sin-Chan P, Huang A. DNMTs as potential therapeutic targets in high-risk pediatric embryonal brain tumors. Expert Opin Ther Targets. 2014;18(10):1103-1107. doi:10.1517/14728222.2014.938052

Fried I, Huang A, Bartels U, et al. Chronic residual lesions in metastatic medulloblastoma patients. J Pediatr Hematol Oncol. 2014;36(1):71-75. doi:10.1097/MPH.0b013e3182843b40

Picard D, Miller S, Hawkins CE, et al. Markers of survival and metastatic potential in childhood CNS primitive neuro-ectodermal brain tumours: an integrative genomic analysisLancet Oncol. 2012;13(8):838-848. doi:10.1016/S1470-2045(12)70257-7

Zhou L, Picard D, Ra YS, et al. Silencing of thrombospondin-1 is critical for myc-induced metastatic phenotypes in medulloblastoma. Cancer Res. 2010;70(20):8199-8210. doi:10.1158/0008-5472.CAN-09-4562

Li M, Lee KF, Lu Y, et al. Frequent amplification of a chr19q13.41 microRNA polycistron in aggressive primitive neuroectodermal brain tumors. Cancer Cell. 2009;16(6):533-546. doi:10.1016/j.ccr.2009.10.025