Opsoclonus-myoclonus-ataxia syndrome (OMAS) is a rare but serious autoimmune neurological illness that typically affects toddlers and young children. Neuroblastoma (a tumour of the sympathetic nervous system) is found in up to 50% of pediatric OMAS cases, and 2-3% of children with neuroblastoma will develop OMAS. Symptoms of OMAS include uncontrolled rapid eye movements (opsoclonus), involuntary jerking of muscles (myoclonus), body coordination/balance difficulties (ataxia), and behavioural/sleep disturbances. Even with treatment, a large proportion of children with OMAS continue to experience long-term cognitive, behavioural and motor deficits; however, early intervention has been shown to improve prognosis in some cases. The complexity of the disease combined with the lack of standardized diagnostic testing and assessment tools pose major challenges for timely diagnosis and management of OMAS. The goal of our research is to investigate eye movement outcomes in relation to cerebellar volume, cognitive function, and disease severity in pediatric OMAS. Findings from this study will help contribute to the development of standardized assessment tools for outcome evaluation in OMAS.
If interested please contact Tara Feltham (yeh.team@sickkids.ca).
COMPLETED STUDIES
Visual Outcomes in Neuroinflammation
We are performing multiple studies evaluating the visual system in neuroinflammatory disorders. These observational studies specifically focus on early structural and functional manifestations of optic neuritis and longitudinal changes in the visual pathway and visual function in youth with neuroinflammatory disorders.
Together, these studies will allow us to identify the most sensitive measures as readouts of the structural and functional effects of neuroinflammation for use in future research. Finally, we are performing studies evaluating the relationship between visual outcomes, eye movements (using eye tracking), and neural oscillations (using MEG).
Neural Oscillations and Cognitive Dysfunction in MS
The purpose of this study is to get a better understanding of physical measures, specifically brain structure and brain waves, that are linked to problems in brain functioning, such as speed of thinking, that happen shortly after a patient is diagnosed with MS. This is important because these brain waves can help us find possible treatments to help fix the brain structure that could be causing the problems with brain functioning in patients with MS. In this study, we will focus on the brain waves since they seem to move differently in patients with MS compared to healthy children.