High-resolution high-throughput CryoEM

The High-Resolution High-Throughput CryoEM core is used for high-resolution structure determination of proteins that have already been screened at other facilities.

The facility provides state-of-the-art high-resolution imaging that can extend resolution from 4 to 6 Å to 2 to 4 Å. It does not provide an advantage for obtaining structures at less than 4 Å resolution, and it is not suitable for screening samples.

We house high-end microscopes with high-resolution and high-throughput data using cryo-electron microscopy single particle analysis, with the ultimate goal of producing three-dimensional structures of proteins to understand their function, and contribute to developing drugs that interact with it.

High-resolution high-throughput CryoEM

The High-Resolution High-Throughput CryoEM core is used for high-resolution structure determination of proteins that have already been screened at other facilities.

The facility provides state-of-the-art high-resolution imaging that can extend resolution from 4 to 6 Å to 2 to 4 Å. It does not provide an advantage for obtaining structures at less than 4 Å resolution, and it is not suitable for screening samples.

We house high-end microscopes with high-resolution and high-throughput data using cryo-electron microscopy single particle analysis, with the ultimate goal of producing three-dimensional structures of proteins to understand their function, and contribute to developing drugs that interact with it.

Fees

Service Rate per day (*)
Internal users (SickKids/U of T/UHN/Mt. Sinai) with funding higher than $150K $785
Internal users (SickKids/U of T/UHN/Mt. Sinai) with funding less than $150K  $535
External Users Krios microscope  $785
Internal users (SickKids/U of T/UHN/Mt. Sinai) with funding less than $150K $535
External $2,035
Industrial $6,035
Consumables Rate per day (*)
One Autogrid (**) $30
Liquid nitrogen / day  $35

* Price decreases after 10 days

** A minimum of four autogrids are required for data collection

Interested in our services?

Users are asked to provide the following information in a single PDF file (less than 20 MB) to John Rubinstein and we’ll review your data collection request.

Section A

  • User name
  • Principal Investigator’s name
  • Institution: SickKids, UHN, U of T, LTRI, Other (please name)
  • Sample name and details

Section B

  • Describe where/how initial screening was done (Microscope, camera, pixel size, exposure and exposure rate)
  • How many particle images were obtained from each micrograph?
  • Attach a sample micrograph

Section C

  • Describe how initial processing was done (software, preprocessing details, number of micrographs, number of particle images used, FSC calculation details)
  • Attach images of initial 3D map and FSC curve

Team

Dr. Samir Benlekbir, Facility Manager

Publications

  1. Edurne Rujas et al, bioRxiv 2020.10.15.341636; (2020)
  2. Iga Kucharska et al, bioRxiv 2020.06.02.131110; (2020)
  3. Yong Zi Tan et al, bioRxiv 2020.05.03.075366; (2020)
  4. Hui Guo et al, bioRxiv 2020.08.06.225375; (2020)
  5. Conicella AE et al, PNAS, volume 117, no 42, pages 26226-26236 (2020)
  6. Guo H et al, IUCrJ, volume7, no 5, pages 860-869 (2020)
  7. Huang R et al, Chem. Int. Ed. (2020)
  8. Lee H et al, Cell, volume 182, no 2, pages 345-356 (2020)
  9. Abbas YM et al, Science, volume 367, no 6483, pages 1240-1246 (2020)
  10. Vahidi S et al, PNAS. volume 117, no 11, pages 5895-5906 (2020)
  11. Vasanthakumar T et al, Trends Biochem Sci, volume 45, no 4, pages 295-307 (2020)
  12. Ripstein ZA et al, eLife. 9:e52158. (2020)
  13. Rubinstein JL et al, Acta Crystallogr D Struct Biol, volume 75, no 12, pages 1063-1070 (2019)
  14. McCallum M et al, Nat Commun, 10 (1):5198 (2019)
  15. Li Z, Tomlinson AC et al, Elife. 8: e51230 (2019)
  16. Lou JW et al, Sci Rep. 9(1):12987 (2019)
  17. Lai LTF et al, Autophagy, (2019)
  18. Guo H et al, eLife, 8:e43128 (2019)
  19. Lou JW et al, bioRxiv 636167; (2019)
  20. Huang R et al, PNAS, volume 116, no 1, pages 158-167 (2019)
  21. Vasanthakumar T et al, PNAS, volume 116, no 15, pages 7272-7277 (2019)
  22. Benjamin Wiseman et al, NSMB, volume 25, pages 1128–1136 (2018)
  23. Siavash Vahidi et al, PNAS, volume 115, no 28 pages 6447-6456 (2018)
  1. Edurne Rujas et al, bioRxiv 2020.10.15.341636; (2020)
  2. Iga Kucharska et al, bioRxiv 2020.06.02.131110; (2020)
  3. Yong Zi Tan et al, bioRxiv 2020.05.03.075366; (2020)
  4. Hui Guo et al, bioRxiv 2020.08.06.225375; (2020)
  5. Conicella AE et al, PNAS, volume 117, no 42, pages 26226-26236 (2020)
  6. Guo H et al, IUCrJ, volume7, no 5, pages 860-869 (2020)
  7. Huang R et al, Chem. Int. Ed. (2020)
  8. Lee H et al, Cell, volume 182, no 2, pages 345-356 (2020)
  9. Abbas YM et al, Science, volume 367, no 6483, pages 1240-1246 (2020)
  10. Vahidi S et al, PNAS. volume 117, no 11, pages 5895-5906 (2020)
  11. Vasanthakumar T et al, Trends Biochem Sci, volume 45, no 4, pages 295-307 (2020)
  12. Ripstein ZA et al, eLife. 9:e52158. (2020)
  13. Rubinstein JL et al, Acta Crystallogr D Struct Biol, volume 75, no 12, pages 1063-1070 (2019)
  14. McCallum M et al, Nat Commun, 10 (1):5198 (2019)
  15. Li Z, Tomlinson AC et al, Elife. 8: e51230 (2019)
  16. Lou JW et al, Sci Rep. 9(1):12987 (2019)
  17. Lai LTF et al, Autophagy, (2019)
  18. Guo H et al, eLife, 8:e43128 (2019)
  19. Lou JW et al, bioRxiv 636167; (2019)
  20. Huang R et al, PNAS, volume 116, no 1, pages 158-167 (2019)
  21. Vasanthakumar T et al, PNAS, volume 116, no 15, pages 7272-7277 (2019)
  22. Benjamin Wiseman et al, NSMB, volume 25, pages 1128–1136 (2018)
  23. Siavash Vahidi et al, PNAS, volume 115, no 28 pages 6447-6456 (2018)

Contact us

For questions or more information about our services, please contact Dr. Samir Benlekbir at sb@sickkids.ca.