The Hospital for Sick Children

Technology Assessment at Sick Kids (TASK)

THE USE OF BIOLOGIC RESPONSE MODIFIERS IN POLYARTICULAR COURSE JUVENILE IDIOPATHIC ARTHRITIS – A SYSTEMATIC REVIEW UPDATE

Authors:

Wendy J. Ungar, MSc, PhD

Senior Scientist, Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto Associate Professor, Health Policy, Management & Evaluation, University of Toronto

Vania Costa, MSc

Research Associate, Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto

Heather Burnett, MSc

Research Project Coordinator, Child Health Evaluative Sciences, The Hospital for Sick Children, Toronto

> Corresponding Author: Wendy J. Ungar, MSc, PhD

> > Collaborators:

Brian M. Feldman, MD, MSc, FRCPC

Professor Departments of Pediatrics, Medicine, Health Policy Management & Evaluation, and the Dalla Lana School of Public Health, University of Toronto

Senior Scientist and Head, Division of Rheumatology, The Hospital for Sick Children, Toronto

Ronald Laxer, MD, FRCPC

Professor, Departments of Pediatrics and Medicine, University of Toronto Staff Rheumatologist, Division of Rheumatology, The Hospital for Sick Children, Toronto

> Report No. 2012-01 Date: August, 2012

Available at: http://lab.research.sickkids.ca/task/reports-theses/

ACKNOWLEDGEMENTS

We thank Shahjereen Shahidullah for her contributions to the systematic review searches and data extraction.

Funding for this research was provided by the Hospital for Sick Children Research Institute and by a program grant from the Ontario Ministry of Health and Long-term Care Drug Innovation Fund.

The views expressed in the material are the views of the authors and do not necessarily reflect those of the province.

CONFLICTS OF INTEREST

The authors declare that they do not have any conflicts of interest.

TABLE OF CONTENTS

LIS	TOF	TABLESiv
LIS	TOF	APPENDICESiv
AB	STRA	.CTv
1	OBJ	IECTIVE
2	MET	THODS
2	2.1	Inclusion criteria6
2	2.2	Literature searches7
2	2.3	Study Selection7
2	2.4	Data extraction7
2	2.5	Quality appraisal8
3	RES	SULTS
3	3.1	Literature search8
3	3.2	Comparative studies
3	3.3	Non-comparative studies9
3	3.4	Quality appraisal9
3	3.5	Efficacy16
	3.5.1	1 Etanercept 16
	3.5.2	2 Infliximab16
	3.5.3	3 Abatacept16
	3.5.4	4 Adalimumab16
	3.5.5	5 Anakinra17
	3.5.6	6 Rituximab17
3	3.6	Safety
4	CON	NCLUSIONS
RE	FERE	NCES
AP	PEND	DICES

LIST OF TABLES

- Table 1
 Comparative study design characteristics
- Table 2
 Comparative study baseline patient characteristics
- Table 3
 Non-Comparative study design characteristics
- Table 4
 Non-comparative study baseline patient characteristics

LIST OF APPENDICES

- Appendix 1 Results of JADAD quality appraisal of randomized controlled trials
- Appendix 2 Results of CASP quality appraisal of observational studies
- Appendix 3 Efficacy data for all included studies
- Appendix 4 Rates of discontinuation for all included studies
- Appendix 5 Adverse events (serious and non-serious) and deaths reported

ABSTRACT

Objective

To systematically review the clinical efficacy and safety evidence of biologic drugs used to treat the polyarticular subtype of juvenile idiopathic arthritis (JIA).

Methods

The peer-reviewed and grey literature were searched between 2000 and 2011 for randomized controlled trials, non-randomized comparative studies, and non-comparative observational cohort studies. The drugs evaluated included etanercept, infliximab, adalimumab, abatacept, anakinra, and ritixumab. Eligible studies included twenty or more patients with JIA, the majority of whom had polyarticular course disease. Outcomes of interest were disease improvement defined by the American College of Rheumatology criteria for Pediatrics, disease flares, rates of inactive disease, remissions, discontinuations, and adverse events (severe and non-severe).

Results

Thirty five studies were included (15 new and 20 from the 2008 review), the majority of which evaluated the efficacy and safety of etanercept. Six randomized controlled trials in patients with polyarticular JIA were identified, including one each for etanercept, infliximab, adalimumab, abatacept, and anakinra, and one looking at infliximab as a first-line therapy. There was strong evidence to support the efficacy and safety of biologics over the short-term, but a lack of long-term data for treatments other than etanercept. Several high-quality, large, and ongoing etanercept registries confirmed the efficacy and safety of etanercept over the long-term. Important differences in the study designs, inconsistent reporting of patient outcomes, and variations in the methods used to define and measure patient response prevented indirect comparisons across studies.

Conclusions

Current evidence shows that a short-term improvement in treatment response is achieved when patients with polyarticular JIA with an inadequate response to conventional treatment are treated with biologics. Long-term effectiveness data, however, are sparse with many unanswered questions surrounding switches between biologics, handling patients that achieve disease remission, and long-term safety concerns. The field of JIA outcomes research is in need of clearly defined outcome measures that are relevant to clinical practice, and uniform reporting of outcomes across studies. Study designs other than RCTs may be important in understanding the role of biologics in JIA over the long-term.

1 OBJECTIVE

As new biologics with indications for juvenile idiopathic arthritis (JIA) continue to be introduced, uncertainties regarding the long-term clinical benefits and safety outcomes persist. In recent years extensive findings from observational and long-term follow-up studies have been reported. These studies may lead to a further understanding of the long term clinical benefit and safety of biologic drugs in JIA. The purpose of this report was to update the systematic review carried out in 2010¹ and summarize new clinical data which could be used to evaluate the efficacy and safety of biologic therapies used to treat polyarticular JIA.

2 METHODS

2.1 Inclusion criteria

2.1.1 Study types

All randomized controlled trials (RCT), non-randomized comparative studies, observational cohort designs, and patient registries were eligible for inclusion. Health technology assessments reports, meta-analyses, and systematic reviews were also eligible. Multiple publications of the same study or cohort of patients were included if outcomes were reported for different patient sub-groups or different study phases or follow-up periods. Unlike the previous review, conference abstracts were not eligible for inclusion in the update.

2.1.2 Study populations

The population of interest was patients with polyarticular-course JIA of any age who presented with an inadequate response to optimized non-biologic or biologic disease modifying antirheumatic drug (DMARD) regimens. Eligible studies included those with twenty or more patients with JIA of whom all or the majority had polyarticular course disease.

2.1.3 Interventions

All clinical studies of biologic drugs including etanercept, infliximab, anakinra, adalimumab, abatacept, tocilizumab and rituximab were eligible for inclusion. Studies that presented results for a class of drugs, e.g. different anti-tumor necrosis factor alpha (TNF- α) drugs evaluated as one group, rather than individual drugs, were excluded.

2.1.4 Outcomes

Primary outcomes

The primary outcomes evaluated were the American College of Rheumatology (ACR) criteria for disease improvement and disease flares as defined previously.¹

Secondary outcomes

Secondary outcomes evaluated were rates of inactive disease, disease remission, drug withdrawal and discontinuation (due to intolerance, lack of efficacy, or patient preference). Safety was evaluated from reports of severe and non-severe adverse drug reactions (infectious or non-infectious). Changes in concomitant DMARD and glucocorticoid use, quality of life, days missed from school or daily activities, radiographic evidence of disease progression, development of antibodies and levels of cellular markers of inflammation were not summarized in the updated systematic review.

Studies that did not report at least one of the primary or secondary outcomes of interest described above were excluded.

2.2 Literature searches

The peer reviewed and grey literature was searched from January 2009 to December 2011 as described previously.¹ Reference lists of identified articles were also hand-searched for eligible publications.

2.3 Study Selection

The titles and abstracts of all publications identified through the systematic literature search were reviewed for eligibility by two researchers and the full-texts of all potentially eligible articles were retrieved. Articles in English, French, Portuguese, German, Slovak, Spanish, and Italian were included. Google translate was used to extract data from studies written in German, Spanish and Italian.

2.4 Data extraction

Data describing the study design, population, interventions, and efficacy and safety outcomes were extracted from eligible articles and summarized for each study. When possible, total numbers of patients achieving a desired primary or secondary outcome (described above) were extracted from per protocol analyses. Short- and long-term ACR 30, 50, and 70 results were reported, while long-term results based on the most recent follow-up were reported for disease flares, disease remissions, drug discontinuations, and safety. For safety outcomes, the total number of events and the total number of patients were extracted for each outcome when possible. For non-analytic literature reviews of published studies, data were extracted from the original study publications. When possible, data reported exclusively in conference abstracts were replaced by data from the published full-text.

2.5 Quality appraisal

All RCTs were subjected to quality appraisal according to the Jadad criteria² and all observational cohort studies, including those that were identified during in the previous systematic review, were appraised using a modified version of the critical appraisal skills program (CASP) tool.³ The modified CASP tool included only the detailed questions as well as one question about the believability of results. All included studies were also assigned a grade ranging from 1a for high quality systematic reviews to 4 for poor quality cohort and case-control studies based on the Oxford Center for Evidence-based Medicine levels of evidence.⁴

3 RESULTS

3.1 Literature search

The update of the systematic review identified 15 new publications, in addition 23 which were included in the previous report.¹ Three of the previously identified publications⁵⁻⁷ were excluded from the update as they were conference abstracts and data from five previously included conference abstracts were replaced by data reported in the full-text publications.⁸⁻¹² In total, 35 studies published between 2000 and 2011 met the modified inclusion criteria.

3.2 Comparative studies

The design characteristics for all comparative studies are summarized in Table 1. One new RCT was identified (ACUTE-JIA) that compared three arms of treatment: infliximab + MTX, MTX alone, and MTX, sulphasalazine and hydroxychloroquine in combination.¹³ Patients in the ACUTE-JIA study were DMARD and systemic corticosteroid-naïve, with early onset (less than 6 months) polyarticular-course JIA.¹³ RCTs identified in the previous review included one each for etanercept,¹⁴ infliximab,¹⁵ adalimumab,¹⁶ abatacept,¹⁷ and anakinra.¹⁸ Two large, non-

randomized comparative studies were also added (reported previously as conference abstracts). The first compared etanercept + MTX with etanercept alone or MTX alone⁸ and the second compared etanercept alone with etanercept + MTX.⁹ The baseline characteristics of patients included in each comparative study can be found in Table 2.

3.3 Non-comparative studies

The design characteristics for all non-comparative studies are summarized in Table 3. A total of 17 new non-comparative, observational studies were added during the update, resulting in a total of 27 included non-comparative studies; 17 for etanercept,^{11,19-22,25-36} 3 for infliximab,^{23,37,38} 4 for etanercept or infliximab,^{12,39-41} and one each for adalimumab,⁴² abatacept,²⁴ and rituximab.⁴³ Five studies reported results from the open-label extension phases of RCTs for etanercept,²⁰⁻²² infliximab,⁴⁴ and abatacept.²⁴ Nine studies reported results from patient registries in the Netherlands,¹¹ France,³⁶ Germany,^{19,30} Britain,²⁸ Poland,²⁹ and Switzerland.⁴⁰ Two studies reported switches between anti-TNF- α drugs.^{12,41} The remaining studies were a mix of prospective and retrospective studies, including one report on the efficacy and safety of rituximab in patients with severe refractory JIA.⁴³ The baseline characteristics of patients in each comparative study can be found in Table 4.

3.4 Quality appraisal

Results from the Jadad quality appraisal can be found in Appendix 1. Compared to the five original RCTs, the ACUTE-JIA trial was of lower quality according to the Jadad criteria.² Results from the CASP quality appraisal can be found in Appendix 2. Both non-randomized comparative studies of etanercept^{8,9} were of high quality according to the modified CASP appraisal. Reports from the open-label extension phases of the etanercept RCT²⁰⁻²² were of lower quality than other open-label extension studies. British²⁸ and Swiss⁴⁰ registry reports were found to be of the lowest quality, while reports from all other patient registries were consistent with the quality of evidence reported for phase three extensions. The rituximab study⁴³ was also of high-quality according to the CASP domains evaluated.

	Source				Pl	hase 1			Phase 2		Phase 3	3 ^b
Evidence Grade	of funding	Author, Year	Design	Study Drug	Comparat or(s)	Duration (months)	n	Compara tor	Duration (months)	n (active/ control)	Duration (months)	Ν
2b	Industry	Giannini, 2009 ⁸	North American registry	Etanercept	Etanercept + MTX; MTX	36	594	N/A	N/A	N/A	N/A	N/A
2b	Industry	Horneff, 2009 ⁹	Comparative open-label ^a	Etanercept	Etanercept + MTX	23	604	N/A	N/A	N/A	N/A	N/A
1b	Industry	Lovell, 2000 ¹⁴	RCT	Etanercept	None	3	69	Placebo	4	51 (25/26)	N/A	N/A
1b	Industry	Ruperto, 2007 ¹⁵	RCT	Infliximab 3mg/kg + MTX	Placebo + MTX	3.5	122	Infliximab 6mg/kg + MTX	7.5	122 (62/60)	N/A	N/A
2b	Funding Agency	Tynjala, 2011 ¹³	RCT	Infliximab + MTX	MTX; COMBO	13.5	60	N/A	N/A	N/A	N/A	N/A
1b	Industry	llowite, 2009 ¹⁸	RCT	Anakinra ± MTX	None	3	86	Placebo ± MTX	4	50 (25/25)	12	44
1b	Industry	Lovell, 2008 ¹⁶	RCT	Adalimuma b ± MTX	None	4	171	Placebo ± MTX	8	133 (68/65)	12	128
1b	Industry	Ruperto, 2008 ¹⁷	RCT	Abatacept ± MTX	None	4	190	Placebo ± MTX	6	122 (60/62)	N/A	

Table 1 Comparative study design characteristics

Randomized controlled trials and non-randomized studies are reported. Abbreviations: N/A = not applicable; MTX = methotrexate; n = sample size; COMBO = combination therapy (methotrexate, sulphasalazine and hydroxychloroquine)

^a based on data from the German registry¹⁹

^b Open label extension (phase 3) results reported in separate publications for etanercept,²⁰⁻²² infliximab, ²³ and abatacept.²⁴ See non-comparative study design characteristics for details (Table 3).

				Mean		Туре	of onset JIA,	n (%)	Mean	RF	Previous	
Author, Year	Design	Study drug(s)	n	age, years	Female sex, n (%)	Polyar- ticular	Systemic	Other	duration of JIA, years	positive, n (%)	MTX or DMARD, n (%)	Concomitant MTX, n (%)
Giannini,	Open-	MTX	197	9.0	145 (74%)	184 (93%)	13 (7%)	0 (0%)	1.7	34 (17%)	192 (98%)	N/A
2009 ⁸	label	ETN	103	10.8	83 (81%)	95 (92%)	8 (8%)	0 (0%)	4.8	14 (14%)	89 (86%)	0 (0%)
2000	registry	ETN + MTX	294	10.1	214 (73%)	256 (87%)	15 (5%)	23 (8%)	3.4	69 (24%)	294 (100%)	294(100%)
Horneff,	Compa	ETN alone	100	13.1	58 (58%)	27 (27%)	8 (8%)	65 (65%)	5.5	3 (3%)	100 (100%)	0 (0%)
2009 ⁹	rative registry	ETN + MTX	504	12.5	345 (67%)	223 (43%)	57 (11%)	232 (46%)	4.9	65 (13%)	504 (100%)	504(100%)
Lovell,		ETN (phase 1)	69	10.5	43 (62%)	40 (58%)	22 (32%)	7 (10%)	5.9	15 (22%)	69 (100%)	0 (0%)
2000 ¹⁴	RCT	ETN vs. placebo (phase 2)	51	10.6	34 (67%)	31 (61%)	17 (33%)	3 (6%)	5.8	12 (24%)	51 (100%)	0 (0%)
Turniala		IFX + MTX	19	10.5	13 (68%)	18 (95%)	0 (0%)	1 (5%)	1.5	0 (0%)	0 (0%)	19 (100%)
Tynjala, 2011 ¹³	RCT	COMBO	20	8.3	14 (70%)	17 (85%)	0 (0%)	3 (15%)	2.3	1 (5%)	0 (0%)	N/A
2011		MTX	20	10.1	11 (55%)	15 (75%)	0 (0%)	5 (25%)	1.8	0 (0%)	0 (0%)	N/A
Ruperto,	DOT	IFX + MTX (phase 1)	60	11.3	NR	36 (60%)	11 (18%)	13 (22%)	4.2	13 (22%)	60 (100%)	60 (100%)
2007 ¹⁵	RCT	IFX + MTX vs. placebo + MTX (phase 2)	62	11.1	NR	38 (62%)	8 (13%)	15 (25%)	3.6	14 (24%)	62 (100%)	62 (100%)
llaurita		ANA (phase 1)	86	12.0	63 (73%)	62 (72%)	15 (17%)	9 (10%)	4.7	NR	86 (100%)	67 (78%)
llowite, 2009 ¹⁸	RCT	ANA (phase 2)	50	11.0	15 (60%)	33 (66%)	11 (22%)	6 (12%)	4.1	NR	50 (100%)	41 (82%)
2009.0		ANA (phase 3)	44	12.0	31 (70%)	29 (66%)	10 (23%)	5 (11%)	4.8	NR	44 (100%)	38 (86%)
		ADA (phase 1)	86	11.1	67 (78%)	86 (100%)	0 (0%)	0 (0%)	3.6	18 (21%)	18 (21%)	0 (0%)
Lovell, 2008 ¹⁶	RCT	ADA + MTX (phase 1)	85	11.4	68 (80%)	85 (100%)	0 (0%)	0 (0%)	4.0	19 (23%)	85 (100%)	85 (100%)
2000		ÄDA vs. placebo (phase 2)	133	11.2	103 (77%)	133 (100%)	0 (0%)	0 (0%)	3.9	22 (17%)	87 (65%)	85 (64%)
Puparta		ABA (phase 1)	190	12.4	137 (72%)	122 (64%)	37 (20%)	30 (16%)	4.4	41 (22%)	190 (100%)	NR
Ruperto, 2008 ¹⁷	RCT	ABA vs. placebo (phase 2)	122	12.3	87 (71%)	80 (66%)	23 (19%)	18 (15%)	3.8	31 (25%)	122 (100%)	NR

Table 2 Comparative study baseline patient characteristics

Abbreviations: RCT = randomized controlled trial; MTX = methotrexate; ETN = etanercept; IFX= infliximab; ANA = anakinra; ADA = adalimumab; ABA = abatacept; COMBO = combination therapy (methotrexate, sulphasalazine and hydroxychloroquine); RF = rheumatoid factor; n= sample size; JIA = juvenile idiopathic arthritis; NR = not reported

Table 3	Non-Comparative study de	esign characteristics

Evidence grade	Source of funding	Author, Year	Design	Study drug(s)	Duration (months)	n
4	Industry	Mori, 2011 ²⁵	Prospective observational	Etanercept	24	22
2b	Industry	Papsdorf, 2011 ²⁶	Prospective observational ^a	Etanercept ± DMARDs	NR	787
4	NR	Sevcic, 2011 ²⁷	Prospective observational	Etanercept ± MTX	12	72
4	Industry	Southwood, 2011 ²⁸	British registry	Etanercept ± MTX	23 (mean)	434
2b	Industry	Zuber, 2011 ²⁹	Polish registry	Etanercept ± MTX	42 (efficacy); 72 (safety)	188
4	Industry; Public Funding Agency	Otten, 2010 ³⁰	Prospective observational ^b	Etanercept ± MTX	15	179
4	Industry; Public Funding Agency	De Inocencio, 2009 ³¹	Retrospective chart review	Etanercept ± MTX	12	55
4	NR	Halbig, 2009 ³²	Prospective observational ^a	Etanercept ± MTX	24	114
4	Industry	Horneff, 2009b ³³	Open label observationalª	Etanercept 0.8mg/kg ± MTX	3	20
2b	Public Funding Agency	Prince, 2009 ¹¹	Dutch registry	Etanercept ± MTX	75	146
2b	Industry	Lovell, 2008 ²¹	Open label extension ^c	Etanercept ± MTX	96	58
4	Public Funding Agency	Nielsen, 2008 ³⁴	Prospective observational	Etanercept ± MTX	12	40
2b	Industry	Lovell, 2006 ²²	Open label extension ^c	Etanercept ± MTX	48	58
4	NR	Mori, 2005 ³⁵	Prospective observational	Etanercept ± MTX	3	22
2b	Industry	Horneff, 2004 ¹⁹	German registry	Etanercept ± MTX	30	322
2b	Industry	Lovell, 2003 ²⁰	Open label extension ^c	Etanercept ± MTX	24	58
2b	NR	Quartier, 2003 ³⁶	French registry	Etanercept ± MTX	15	61
2b	Industry	Ruperto, 2010 ²³	Open label extension ^d	Infliximab + MTX	48	78
4	NR	De Marco, 2007 ³⁷	Prospective observational	Infliximab ± MTX	36	78
4	NR	Gerloni, 2005 ³⁸	Prospective observational	Infliximab + MTX	12	24
4	NR	Lamot, 2011 ³⁹	Retrospective chart review	Etanercept + MTX or Infliximab + MTX	24	41
4	Industry	Sauvain, 2010 ⁴⁰	Swiss registry	Etanercept or Infliximab ± MTX	24	106
4	Funding Agency	Tynjala, 2009 ¹²	Retrospective chart review	Etanercept or Infliximab	48	209
4	NR	Gerloni, 2008 ⁴¹	Prospective observational	Etanercept or Infliximab	72	163

4	NR	Trachana, 2011 ⁴²	Prospective observational	or switch Adalimumab ± MTX	60	26
2b	Industry	Ruperto, 2010 ²⁴	Open label extension ^e	Abatacept ± MTX	21	153
2b	NR	Alexeeva, 2011 ⁴³	Prospective observational	Rituximab + MTX	24	55

Includes observational, registries, and open-label extension studies. Abbreviations: MTX = methotrexate; DMARD = disease modifying anti-rheumatic drug; n = sample size; NR = not reported

^a based on data from the German registry ¹⁹

^b based on data from the Dutch registry ¹¹

 $^{\rm c}$ open label extension (phase 3) of the etanercept RCT $^{\rm 14}$

 $^{\rm d}$ open label extension (phase 3) of the infliximab RCT $^{\rm 15}$

^e open label extension (phase 3) of the abatacept RCT ¹⁷

				Mean		Туре	of onset JIA,	n (%)	Mean durati	RF	Previous	Concomit
Author, Year	Design	Study drug(s)	n	age, years	Female, n (%)	Polyar- ticular	Systemic	Other	on of JIA, years	positive, n (%)	MTX or DMARD, n (%)	ant MTX, n (%)
Mori, 2011 ²⁵	Prospective observational	ETN	22	11.4	18 (82%)	19 (86%)	1 (5%)	2 (9%)	4.7	NR	22 (100%)	0 (0%)
Papsdorf, 2011 ²⁶	Prospective observational ^a	$ETN \pm MTX$	787	12.5	515 (65%)	310 (39%)	102 (13%)	377 (48%)	5.1	80 (10%)	787 (100%)	567 (72%)
Sevcic, 2011 ²⁷	Prospective observational	$ETN \pm MTX$	72	12.9	50 (69%)	42 (58%)	6 (8%)	24 (33%)	7.4	4 (6%)	72 (100%)	Yes (NR)
Southwood, 2011 ²⁸	British registry	$ETN \pm MTX$	434	12.0 ^g	295 (68%)	NR	68 (16%)	NR	NR	NR	438 (100%)	279 (57%)
Zuber, 2011 ²⁹	Polish registry	$ETN \pm MTX$	188	10.0	123 (65%)	92 (49%)	28 (15%)	68 (36%)	4.3	13 (7%)	188 (100%)	39 (21%)
Otten, 2010 ³⁰	Prospective observational ^b	$ETN \pm MTX$	179	5.8	126 (70%)	84 (47%)	42 (24%)	51 (27%)	NR	NR	179 (100%)	Yes (NR)
De Inocencio,	Retrospective	ETN responders	55	11.0	36 (66%)	14 (25%)	12 (22%)	29 (53%)	4.8	NR	55 (100%)	Yes (NR)
2009 ³¹	chart review	ETN non- responders	16	11.6	7 (44%)	7 (44%)	7 (44%)	2 (12%)	7.1	NR	16 (100%)	Yes (NR)
Halbig, 2009 ³²	Prospective observational ^a	$ETN \pm MTX$	437 ^f	12.1	306 (70%)	191 (44%)	76 (17%)	171 (39%)	5.1	53 (12%)	437 (100%)	362 (83%)
Horneff, 2009b ³³	Open label observational ^a	$ETN \pm MTX$	20	12.9	16 (80%)	16 (80%)	0 (0%)	6 (20%)	4.1	4 (20%)	20 (100%)	12 (60%)
Prince, 2009 ¹¹	Dutch registry	$ETN \pm MTX$	146	11.2 ^g	101 (69%)	66 (45%)	39 (27%)	41 (28%)	4.1 ^g	11 (8%)	146 (100%)	113 (77%)
Lovell, 2008 ²¹	Open label extension ^c	$ETN \pm MTX$	26	10.8	21 (81%)	19 (73%)	5 (19%)	2 (8%)	6.4	6 (24%)	26 (100%)	13 (34%)
Nielsen, 2008 ³⁴	Prospective observational	$ETN \pm MTX$	40	NR	25 (63%)	21 (53%)	11 (28%)	7 (18%)	4.4	NR	40 (100%)	30 (75%)
Lovell, 2006 ²²	Open label extension ^c	$ETN \pm MTX$	32	10.6	26 (81%)	24 (75%)	6 (19%)	2 (6%)	5.9	8 (27%)	32 (100%)	8 (17%)
Mori, 2005 ³⁵	Prospective observational	ETN	22	11.4	18 (82%)	19 (86%)	1 (5%)	2 (9%)	4.7	11 (50%)	22 (100%)	0 (0%)
Horneff, 2004 ¹⁹	German registry	$ETN \pm MTX$	322	NR	NR	133 (41%)	66 (21%)	123 (38%)	NR	NR	322 (100%)	235 (80%)
Lovell, 2003 ²⁰	Open label extension ^c	$ETN \pm MTX$	58	10.0	39 (67%)	34 (59%)	19 (33%)	5 (9%)	5.9	13 (22%)	58 (100%)	10 (17%)
Quartier, 2003 ³⁶	French registry	$ETN \pm MTX$	61	12.2	49 (80%)	13 (21%)	22 (36%)	25 (41%)	6.6	NR	61 (100%)	10 (16%)
Ruperto, 2010 ²³	Open label extension ^d	IFX + MTX	78	NR	NR	NR	NR	NR	NR	NR	NR	NR

Table 4 Non-comparative study baseline patient characteristics

DeMarco, 2007 ³⁷	Prospective observational	$IFX \pm MTX$	78	20.7	66 (85%)	20 (26%)	20 (26%)	37 (48%)	13.6	8 (10%)	78 (100%)	54 (69%)
Gerloni, 2005 ³⁸	Prospective observational	IFX + MTX	24	22.1	24 (100%)	10 (42%)	5 (21%)	9 (37%)	15.3	1 (4%)	24 (100%)	24 (100%)
Lamot, 2011 ³⁹	Retrospective chart review	ETN or IFX or switch	41	11.0	25 (61%)	25 (61%)	0 (0%)	16 (39%)	4.1	6 (15%)	NR	41 (100%)
Sauvain, 2010 ⁴⁰	Swiss registry	ETN ± MTX or IFX ± MTX	106	NR	68 (64%)	35 (33%)	8 (8%)	61 (59%)	3.6	NR	106 (100%)	64 (60%)
Tynjala, 2009 ¹²	Retrospective chart review	ETN IFX	105 104	9.6 10.6	79 (75%) 66 (64%)	66 (63%) 43 (41%)	11 (11%) 2 (2%)	27 (26%) 59 (58%)	5.1 4.9	4 (4%) 5 (5%)	NR NR	NR NR
Gerloni, 2008 ⁴¹	Prospective observational	ETN IFX Switched	95 68 45	13.7 21.7 NR	67 (71%) 57 (84%) 16 (36%)	22 (23%) 9 (13%) 13 (29%)	15 (16%) 8 (12%) NR	58 (61%) 51 (75%) 32 (71%)	8.4 13.7 NR	NR NR NR	NR NR NR	NR NR NR
Trachana, 2011 ⁴²	Prospective observational	ADA \pm MTX	26	12.6	14 (58%)	8 (31%)	4 (15%)	14 (54%)	7.1	1 (4%)	17 (63%)	25 (93%)
Ruperto, 2010 ²⁴	Open label extension ^e	$ABA \pm MTX$	153	12.3	106 (69%)	100 (65%)	32 (21%)	21 (14%)	4.1	33 (22%)	153 (100%)	120 (78%)
Alexeeva, 2011 ⁴³	Prospective observational	RTX + MTX	55	9.3	30 (55%)	7 (13%)	46 (84%)	2 (4%)	4.5	2 (4%)	55 (100%)	55 (100%)

Abbreviations: OLE = open-label extension; MTX = methotrexate; ETN = etanercept; IFX= infliximab; ANA = anakinra;

ADA = adalimumab; ABA = abatacept; RTX = rituximab; n= sample size; JIA = juvenile idiopathic arthritis; NR = not reported

^a based on data from the German registry¹⁹

^b based on data from the Dutch registry¹¹

^c open label extension (phase 3) of the etanercept RCT¹⁴

^d open label extension (phase 3) of the infliximab RCT¹⁵

^e open label extension (phase 3) of the abatacept RCT¹⁷

^f denotes whole registry population not study sample

^g denotes median value

3.5 Efficacy

Efficacy findings unique from those reported previously, are summarized below. Efficacy results including ACR 30, 50, 70 responses, rates of disease flares, inactive disease, and remissions are summarized in Appendix 3. Rates of discontinuations and reasons are summarized in Appendix 4.

3.5.1 Etanercept

Eight high quality etanercept studies with durations of follow-up that ranged from 15 to 96 months were identified. In the most recent update from the open label extension phase of the etanercept trial,²¹ 100% of the residual 11 patients who continued therapy for eight years met the criteria for ACR Ped 70. Results from this study are limited by a small study sample size and the fact that the reported response rate represents only those patients who were proven etanercept responders in phase 1 of the RCT. Other high quality studies with long durations of follow-up were based on data from the Dutch¹¹ and German patient registries.¹⁹ Registry studies reported lower rates of discontinuation than the open-label extension phases and confirm the long-term efficacy of etanercept in real-world clinical settings.

3.5.2 Infliximab

There were no new studies on the efficacy of infliximab were identified during the update. Two reports included patients treated with either etanercept and infliximab.^{39,40} In the retrospective study by Lamot et al,³⁹ 36% of patients were able to achieve disease remission on medication and 29% were able to achieve disease remission off medication.

3.5.3 Abatacept

The only new study of abatacept was a report on the open-label extension phase of the RCT.²⁴ After 21 months of continuous therapy, 63% of patients achieved an ACR Ped 70 response and 37% achieved inactive disease. The majority of discontinuations during the open label extension phase were attributed to a lack of efficacy, particularly in patients who were non-responders during phase one.

3.5.4 Adalimumab

One new prospective observational study of adalimumab was included during the update.⁴² This study followed a small sample of patients over 60 months with very few reported outcomes for the longest duration of follow-up. All of the 4 patients who continued therapy for 60 months met the criteria for ACR Ped 70.

3.5.5 Anakinra

There were no new studies of the efficacy of anakinra were identified during the update.

3.5.6 Rituximab

A single, high quality, observational study of rituximab⁴³ demonstrated the efficacy of treatment in 55 patients with severe refractory JIA. After 24 months 93% of treated patients met the ACR Ped 70 criteria and 98% achieved disease remission. Discontinuations were mostly due to disease remission (71% of all discontinuations).

3.6 Safety

There was wide variation in how adverse events were reported across newly added studies (e.g. number of events, number of patients experiencing events, events per 100 patient-years). Studies that followed patients for more than three years reported between 0.02 to 0.13 serious adverse events per patient-year. The most common events were serious infections, which occurred at a rate of 0.02 to 0.15 per patient-year. After eight years of continuous etanercept treatment,²¹ there appeared to be no increase in the rate of serious adverse events, with most occurring during the first two years of treatment. In the Dutch etanercept registry, the majority of serious adverse events occurred in systemic JIA patients.¹¹

A total of three systemic JIA patients enrolled in the Dutch etanercept registry died after discontinuing etanercept for 8 months; one as a result of suspected macrophage activation syndrome, one as a result of toxic sepsis, and one due to tuberculosis which developed after switching to infliximab therapy.¹¹ Two deaths were also reported in the British etanercept registry in patients who had discontinued treatment.²⁸ Another death occurred during an observational study of adalimumab.⁴² One patient from the German registry developed thyroid cancer nine months after treatment with etanercept and another developed Non-Hodgkins lymphoma.^{9,19}

Non-serious adverse events presented early, usually during the first 3 months of treatment. Reports of all adverse events categorized as serious or non-serious (as described by the author) can be found in Appendix 5.

4 CONCLUSIONS

Findings from the update contribute greatly to our understanding of the long-term efficacy and safety of biologic treatments in polyarticular JIA; in particular etanercept. A number of large, ongoing open-label registries collecting data on patients treated with etanercept over the long-term^{11,19,28,29,36} report lower rates of discontinuation than the open-label extension phases.²⁰⁻²² Findings from these registries confirm the long-term efficacy of etanercept in real-world clinical settings, and suggest that ongoing treatment may be safe over several years of continued treatment. More long-term safety data is however required to rule out concerns that biologics are associated with the development of malignancies and autoimmune disorders. More long-term data will also allow better predictions of long-term outcomes for those who can tolerate and respond to therapy, as well as a further understanding of the long-term consequences for patients that may not be able to continue the treatment for long periods due to loss of efficacy or intolerance. As the field moves forward, registries have the potential to greatly contribute to our understanding of how patients respond to biologic therapies over time – particularly when to discontinue treatment in patients who achieve disease remission on medication, and the best pathways of care for those who show intolerance or a lack of response.

REFERENCES

1. Costa V, Ungar WJ, Hancock-Howard R, Feldman B, Laxer R. The use of biologic response modifiers in polyarticular-course juvenile idiopathic arthritis. Toronto: The Hospital for Sick Children; 2010 January 2010. Report No.: TASK Report No. 2010-01.

2. Jadad AR, Moore RA, Carrol D, et al. Assessing the quality of reports of randomized clinical trials: is blinding necessary? Control Clin Trials 1996;17:1-12.

3. Cohort studies: 12 questions to help you make sense of a cohort study. 2004. (Accessed at http://www.sph.nhs.uk/sph-files/casp-appraisal-tools/cohort%2012%20questions.pdf accessed April 2012.)

4. Oxford Centre for Evidence-based Medicine. Levels of Evidence. 2009. (Accessed at http://www.cebm.net/index.aspx?o=1025 accessed April 2012.)

5. Cochino A, Grigorescu S, Miu N, et al. Combination therapy with etanercept and methotrexate in children with juvenile idiopathic arthritis. Ann Rheum Dis 2008;67:266.

6. Alexeeva E, Alexeeva A, Bzarova T, et al. Efficacy and safety of infliximab therapy in patients with various variants of juvenile idiopathic arthritis. Ann Rheum Dis 2008;67:265.

7. Salmaso A, Gerloni V, Lurati A, et al. Efficacy of a second tnfalpha blocker when the first one failed in patients with juvenile idiopathic arthritis (JIA) treated with infliximab, etanercept and adalimumab. Ann Rheum Dis 2008;67:274.

8. Giannini EH, Ilowite NT, Lovell DJ, et al. Long-term safety and effectiveness of etanercept in children with selected categories of juvenile idiopathic arthritis. Arthritis Rheum 2009;60:2794-804.

9. Horneff G, De Bock F, Foeldvari I, et al. Safety and efficacy of combination of Etanercept and Methotrexate compared to treatment with Etanercept only in patients with juvenile idiopathic arthritis (JIA). Preliminary data from the German JIA Registry. Ann Rheum Dis 2009;68:519-25.

10. Horneff G, Ebert A, Fitter S, et al. Safety and efficacy of once weekly etanercept 0.8 mg/kg in a multicentre 12 week trial in active polyarticular course juvenile idiopathic arthritis. Rheumatology 2009;48:916-9.

11. Prince FHM, Twilt M, Cate Rt, et al. Long-term follow-up on effectiveness and safety of etanercept in juvenile idiopathic arthritis: the Dutch national register. Ann Rheum Dis 2009;68:635-41.

12. Tynjala P, Vahasalo P, Honkanen V, Lahdenne P. Drug survival of the first and second course of antitumour necrosis factor agents in juvenile idiopathic arthritis. Ann Rheum Dis 2009;68 (4):552-7.

13. Tynjala P, Vahasalo P, Tarkiainen M, et al. Aggressive combination drug therapy in very early polyarticular juvenile idiopathic arthritis (ACUTE-JIA): a multicentre randomised open-label clinical trial. Ann Rheum Dis 2011;70:1605-12.

14. Lovell DJ, Giannini EH, Reiff A, et al. Etanercept in children with polyarticular juvenile rheumatoid arthritis. Pediatric Rheumatology Collaborative Study Group. N Engl J Med 2000;342:763-9.

15. Ruperto N, Lovell DJ, Cuttica R, et al. A randomized, placebo-controlled trial of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis. Arthritis Rheum 2007;56:3096-106.

16. Lovell DJ, Ruperto N, Goodman S, et al. Adalimumab with or without methotrexate in juvenile rheumatoid arthritis. N Engl J Med 2008;359:810-20.

17. Ruperto N, Lovell DJ, Quartier P, et al. Abatacept in children with juvenile idiopathic arthritis: a randomised, double-blind, placebo-controlled withdrawal trial. Lancet 2008;372:383-91.

18. Ilowite N, Porras O, Reiff A, et al. Anakinra in the treatment of polyarticular-course juvenile rheumatoid arthritis: safety and preliminary efficacy results of a randomized multicenter study. Clin Rheumatol 2009;28:129-37.

19. Horneff G, Schmeling H, Biedermann T, et al. The German etanercept registry for treatment of juvenile idiopathic arthritis. Ann Rheum Dis 2004;63:1638-44.

20. Lovell DJ, Giannini EH, Reiff A, et al. Long-term efficacy and safety of etanercept in children with polyarticular-course juvenile rheumatoid arthritis: interim results from an ongoing multicenter, open-label, extended-treatment trial. Arthritis Rheum 2003;48:218-26.

21. Lovell DJ, Reiff A, llowite NT, et al. Safety and efficacy of up to eight years of continuous etanercept therapy in patients with juvenile rheumatoid arthritis. Arthritis Rheum 2008;58:1496-504.

 Lovell DJ, Reiff A, Jones OY, et al. Long-term safety and efficacy of etanercept in children with polyarticular-course juvenile rheumatoid arthritis. Arthritis Rheum 2006;54:1987-94.

23. Ruperto N, Lovell DJ, Cuttica R, et al. Long-term efficacy and safety of infliximab plus methotrexate for the treatment of polyarticular-course juvenile rheumatoid arthritis: findings from an open-label treatment extension. Ann Rheum Dis 2010;69:718-22.

24. Ruperto N, Lovell DJ, Quartier P, et al. Long-term safety and efficacy of abatacept in children with juvenile idiopathic arthritis. Arthritis Rheum 2010;62:1792-802.

25. Mori M, Takei S, Imagawa T, et al. Etanercept in the treatment of disease-modifying anti-rheumatic drug (DMARD)-refractory polyarticular course juvenile idiopathic arthritis: Experience from Japanese clinical trials. Mod Rheumatol 2011;21:572-8.

26. Papsdorf V, Horneff G. Complete control of disease activity and remission induced by treatment with etanercept in juvenile idiopathic arthritis. Rheumatology 2011;50:214-21.

27. Sevcic K, Orban I, Brodszky V, et al. Experiences with tumour necrosis factor-alpha inhibitors in patients with juvenile idiopathic arthritis: Hungarian data from the National Institute of Rheumatology and Physiotherapy Registry. Rheumatology 2011;50:1337-40.

28. Southwood TR, Foster HE, Davidson JE, et al. Duration of etanercept treatment and reasons for discontinuation in a cohort of juvenile idiopathic arthritis patients. Rheumatology 2011;50:189-95.

29. Zuber Z, Rutkowska-Sak L, Postepski J, et al. Etanercept treatment in juvenile idiopathic arthritis: The Polish registry. Med Sci Monit 2011;17:SR35-SR42.

30. Otten MH, Prince FH, Twilt M, et al. Delayed clinical response in patients with juvenile idiopathic arthritis treated with etanercept. J Rheumatol 2010;37:665-7.

31. De Inocencio Arocena J, Merino Munoz R, Alvarez Madrid C, Garcia-Consuegra Molina J. Efficacy of etanercept in the treatment of juvenile idiopathic arthritis. [Spanish]. Anales de Pediatria 2009;70 (4):354-61.

32. Halbig M, Horneff G. Improvement of functional ability in children with juvenile idiopathic arthritis by treatment with etanercept. Rheumatol Int 2009.

33. Horneff G, Minden K, Kuemmerle-Deschner J, Thon A, Girschick HJ, Huppertz HI. Safety and efficacy of once weekly etanercept 0.8 mg/kg: interim analysis of a multicentre 12 weeks open trial in active juvenile idiopathic arthritis. Ann Rheum Dis 2008;67:268.

34. Nielsen S, Ruperto N, Gerloni V, et al. Preliminary evidence that etanercept may reduce radiographic progression in juvenile idiopathic arthritis. Clin Exp Rheumatol 2008;26:688-92.

35. Mori M, Takei S, Imagawa T, et al. Pharmacokinetics, efficacy, and safety of short-term (12 weeks) etanercept for methotrexate-refractory polyarticular juvenile idiopathic arthritis in Japan. Mod Rheumatol 2005;15:397-404.

36. Quartier P, Taupin P, Bourdeaut F, et al. Efficacy of etanercept for the treatment of juvenile idiopathic arthritis according to the onset type. Arthritis Rheum 2003;48:1093-101.

37. De Marco G, Gerloni V, Pontikaki I, et al. Long-term evaluation of infliximab in the treatment of persistently active juvenile idiopathic arthritis refractory to conventional therapy. Reumatismo 2007;59:50-6.

38. Gerloni V, Pontikaki I, Gattinara M, et al. Efficacy of repeated intravenous infusions of an anti-tumor necrosis factor alpha monoclonal antibody, infliximab, in persistently active, refractory juvenile idiopathic arthritis: results of an open-label prospective study. Arthritis Rheum 2005;52:548-53.

39. Lamot L, Bukovac LT, Vidovic M, Frleta M, Harjacek M. The 'head-to-head' comparison of etanercept and infliximab in treating children with juvenile idiopathic arthritis. Clin Exp Rheumatol 2011;29:131-9.

40. Sauvain MJ, Schalm SB, Berthet G, et al. Swiss Registry for TNF-alpha blockers in children and adolescents with rheumatological diseases. [German]. Schweiz Rundsch Med Prax 2010;99:649-54.

41. Gerloni V, Pontikaki I, Gattinara M, Fantini F. Focus on adverse events of tumour necrosis factor alpha blockade in juvenile idiopathic arthritis in an open monocentric long-term prospective study of 163 patients. Ann Rheum Dis 2008;67:1145-52.

42. Trachana M, Pratsidou-Gertsi P, Pardalos G, Kozeis N, Badouraki M, Kanakoudi-Tsakalidou F. Safety and efficacy of adalimumab treatment in Greek children with juvenile idiopathic arthritis. Scand J Rheumatol 2011;40:101-7.

43. Alexeeva EI, Valieva SI, Bzarova TM, et al. Efficacy and safety of repeat courses of rituximab treatment in patients with severe refractory juvenile idiopathic arthritis. Clin Rheumatol 2011;30:1163-72.

44. Ruperto N, Lovell DJ, Cuttica R, et al. Long-Term Efficacy and Safety of Infliximab plus Methotrexate for The Treatment of Polyarticular Course Juvenile Rheumatoid Arthritis: Findings from an Open-Label Treatment Extension. Annals of the Rheumatic Diseases 2009.

APPENDICES

APPENDIX 1 Results of JADAD quality appraisal of randomized controlled trials

Author, year	Drug	Randomization (method described appropriate ?)	Double-blind (appropriately described?)	Wthdrawals and dropouts described?
Lovell, 2000	Etanercept	Randomized, method not described	Yes, vials for administration reconstituted by personnel not involved in patient assessment	Yes
Ruperto, 2007	Infliximab 3mg/kg + MTX	Randomized, no details on method	Double-blind, method described	Yes
llowite, 2008	Anakinra ± MTX	Randomized, no details on method	Double-blind, method described	Yes
Lovell, 2008	Adalimumab ± MTX	Randomized, method described	Double-blind, method described	Yes
Ruperto, 2008	Abatacept ± MTX	Randomized, method described	Double-blind, method described	Yes
Tynjala, 2011	Infliximab + MTX	Randomized, method described	No	Yes

Abbreviation: MTX = methotrexate

APPENDIX 2 Results of CASP quality appraisal of observational studies

Author, Year	Drug	Acceptable recruitment?	Accurate measurement of exposure?	Outcomes accurately measured to minimize bias?	Confounding factors identified?	Follow-up complete/long enough?	Results believable?
Mori, 2011	ETN	Yes - ETN naïve poly-JIA, failure on MTX	Yes, concomitant therapy not allowed; MTX washout period 2 weeks prior to baseline assessment	All patients completed 3 month study; Not clear how response rates were determined for patients completing 24 months	No	Discontinuations not reported	Yes, but small sample size, short duration, and discontinuations not reported.
Papsdorf, 2011	ETN ± MTX	Yes - refractory JIA, failure on MTX and/or corticosteroid	Yes, concomitant MTX accounted for in analysis of efficacy and safety (sub-group)	Yes, but multiple physicians/centers	Yes	Yes, Kaplan- Meier analysis used to estimate duration required to reach desired outcomes	Yes
Sevcic, 2011	ETN ± MTX	Yes - poly-JIA, failure on MTX (selection based on available data)	No, concomitant MTX exposure not accounted for, three patients switched to ADA (not clear how analyzed?)	Yes, but multiple physicians/centers	No	Yes, but short duration	Yes, but unclear whether ACR Pedi scores reflect cohort from baseline or time of analysis.
Southwood, 2011	ETN ± MTX	Yes - JIA, failure on MTX	No, concomitant MTX exposure not accounted for	No, only discontinuations measured, no explanation of patient deaths	No	No, data presented as mean duration of follow-up	Yes, but many confounding factors not accounted for
Zuber, 2011	ETN ± MTX	Yes - JIA, failure on MTX	No, concomitant MTX exposure not accounted for	Yes, but multiple physicians/centers	Yes	Yes, but short duration	Yes, but dropout rate not accounted for in measures of effectiveness
Otten, 2010	ETN ± MTX	Yes, specific subset of Dutch regisry (JIA, failure on MTX)	Not clear	Yes, but multiple physicians/centers	Not clear	Yes, but short duration	Yes, ITT analysis carried out but not clear which patient groups were included/excluded.
Delnocen- cio, 2009	ETN ± MTX (responders)	Yes, retrospective study carried out at single center (JIA,	Not clear	Yes	Yes	Yes	Yes

		failure on MTX)					
Giannini, 2009	ETN ± MTX (non- responders)	Yes - systemic, oligo and poly- JIA, various criteria based on treatment arm	No, allowed prior long-term exposure to MTX in ETN groups but not MTX groups; exposure to other DMARDs allowed	No, effectiveness measured by multiple physicians global assessment and joint counts	Yes	Yes	Yes, but not comparable due to different durations of previous drug exposure and concomitant treatments
Halbig, 2009	$ETN \pm MTX$	No, selection based on data availability	Not clear	Yes, but multiple physicians/centers	Yes	No, follow-up incomplete	Yes
Horneff, 2009		Yes (JIA, failure on ≥ 1 DMARD	Yes, no other DMARDs allowed	Yes, but multiple physicians/centers	Yes	No, inconsistent reporting of patient disposition	Yes, ITT analysis included discontinuations due to remission. Those who had not completed 12 months of treatment were excluded from the ITT analysis.
Horneff, 2009b	ETN 0.8mg/kg ± MTX	Yes - biologic naïve poly-JIA, failure on MTX	No, concomitant MTX and other DMARD exposure not accounted for	Yes, but multiple physicians/centers	No	Yes, but short duration	Yes
Prince , 2009	ETN ± MTX	Yes – JIA, failure on MTX	No, concomitant drugs and variable dosing allowed. Patients were allowed to discontinue or begin concomitant therapy during study	Yes, but multiple physicians/centers	Yes	Yes	Yes, ITT analysis included remissions in response rates, but not clear if "too early to judge" and "transitions to adult care" were included. Separate analysis for ILAR sub-types.
Lovell, 2008	ETN ± MTX	Yes - poly-JIA, failure on MTX (continued from previous open label phase)	No, concomitant MTX use increased over time, not accounted for	Yes, but multiple physicians/centers	Yes	No, inconsistent reporting of patient disposition	Yes, LOCF analysis similar to per- protocol results.
Nielsen, 2008	ETN ± MTX	Yes - JIA, failure on MTX (required hand/ wrist	No, concomitant MTX and other DMARD exposure allowed	Yes, but only ACR 30 reported, no safety data, multiple	No	No, droupouts not described and short duration	Yes, but small sample size and droupout rate not considered

		radiograph)		physicians/centers			
Lovell, 2006	ETN ± MTX	Yes - poly-JIA, failure on MTX (continued from previous OLE)	No, concomitant MTX use increased over time, not accounted for	Yes, but multiple physicians/centers	Yes	No, missing values not explained, inconsistent reporting of patient disposition	Yes, but dropout rate not accounted for in measures of effectiveness
Mori ,2005	ETN	Yes - poly-JIA, failure on MTX	Yes, concomitant therapy not allowed; MTX washout period 2 weeks prior to baseline assessment, other DMARDs 1 month prior	Yes, but multiple physicians/centers	Not clear	Yes, but short duration	Yes, but small sample size
Horneff, 2004	ETN ± MTX	No, includes some non-JIA patients (n=12)	Yes, concomitant MTX and corticosteroid treatments accounted for in analysis	Yes, but multiple physicians/centers	Yes	Yes	Yes, LOCF analysis carried out
Lovell, 2003	ETN ± MTX	Yes - poly-JIA, failure on MTX (previously enrolled in RCT)	Yes, concomitant MTX not allowed in first year of study. 10 patients started MTX after 1 year.	Yes, but multiple physicians/centers	Yes	No, inconsistent reporting of patient disposition compared to reports in original RCT	Yes, modified ITT accounted for drop- outs due to lack of efficacy, and AEs. Discontinuation due to remission were excluded from ITT.
Quartier, 2003	ETN ± MTX	Yes - poly-JIA, failure on MTX	Yes, no concomitant DMARD treatment allowed; washout period 2 weeks prior to baseline assessment.	Yes, but multiple physicians/centers	Yes	No, missing values and short duration (longer follow-up data available)	Yes, ITT analysis accounted for dropouts
Ruperto, 2009	IFX + MTX	Yes, JIA patients, failure on MTX)	No, MTX and IFX dose adjustments allowed	Yes, but multiple physicians/centers	Yes	Yes, some missing efficacy data unexplained	Yes, but patients included in ITT analysis not described.
De Marco, 2007	IFX ± MTX	Yes, but no age restriction, single center	No, concomitant MTX and other DMARD exposure and wide-range IFX dose adjustments	No, response measure using both adult and pediatric measures (ACR Ped 30 vs. ACR 20)	Yes	Yes	Yes, explicitly state that improvement rates are based on remaining subjects
Gerloni, 2005	IFX + MTX	Yes, but no age restriction, single center	No, concomitant MTX exposure and wide-range IFX dose adjustments	Yes, single observer	Yes	No, pilot study - many patients without observation at 1yr.	Yes, but dropout rate not accounted for in measures of effectiveness
Lamot, 2011	ETN or IFX or switch	Yes, retrospective	Yes	Yes, but multiple physicians/centers	Yes	Yes	Yes

		study carried out at 2 centers					
Sauvain, 2010	ETN ± MTX or IFX ± MTX	No, includes some non-JIA patients and those with uveitis	Not clear	Not clear	Not clear	Not clear	Not clear
Tynjala, 2009	ETN or IFX	Yes, retrospective chart review (JIA, anti-TNF therapy for > 1 year)	Not clear	Yes, but no efficacy outcomes measured	Yes	Yes, Kaplan- Meier analysis used to estimate duration required to reach desired outcomes	Yes
Gerloni, 2008	ETN or IFX or switch	Not clear	No, concomitant MTX and other DMARD exposure and IFX dose adjustments, unbalanced treatment groups	Yes, but no efficacy outcomes measured	No	Not clear	Not clear, many confounding factors
Alexeeva, 2011	RTX + MTX	Yes, single center	Yes	Yes	Yes	Yes	Yes
Trachana, 2011	ADA ± MTX	Yes, single center (JIA, failure on DMARD or anti-TNF drug)	Not clear	Yes, but multiple physicians/centers	No	No, very few observations beyond 1 yr.	Yes, but many confounding factors not accounted for
Ruperto, 2010	ABA ± MTX	Yes, JIA, failure on DMARD or anti-TNF drug	No, proportion of patients on concomitant MTX not reported	Yes, but multiple physicians/centers	Yes	Yes	Yes, patients from RCT phase 1 and 2 analyzed separately

Abbreviations: JIA = juvenile idiopathic arthritis; DMARD = disease modifying anti-rheumatic drug; MTX = methotrexate; ETN = etanercept; IFX = infliximab; ADA = adalimumab; ABA = abatacept; ANA = anakinra; RTX = rituximab; RCT = randomized controlled trial; ITT = intention to treat; LOCF = last observation carried forward

APPENDIX 3 Efficacy data for all included studies

	uthor,	Mori,	Sevcic,	Zuber,	Otten,	De Ino-	Halbig,			Horneff,	Prince,	Lovell,	Nielser	n, 2008	Lovell,	Mori,	Horneff,	Lovell,	Quar-	Lov	ell, 2000	
	Date	2011	2011	2011	2010	cencio, 2009	2009	Horne	ff, 2009	2009b	2009	2008	Radio- graph	None	2006	2005	2004	2003	tier, 2003	Phase 1	Pha	se 2
[)rug(s)	ETN	ETN ± MTX	ETN	ETN	ETN	ETN	ETN	ETN + MTX	ETN 0.8mg/kg	ETN	ETN	ETN ± MTX	ETN ± MTX	ETN	ETN	ETN	ETN	ETN ± MTX	ETN	Place bo	ETN
n (I	oaseline)	24	72	186	179 [¶]	71	102 [[]	100	504	20	107 [[]	58*	40	171	58	22	222* [[]	58 [¶]	61¶	69	26	25
3 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	22 20 (91%) 20 (91%) 17 (77%)	71 88% 80% 40%	167 81% 66% 28%	145 100% 86% 66%					95% 75% 75%	107 90 (84%) 79 (74%) 62 (58%)		36 72%	147 64%		22 91% 91% 68%	178 81% 67% 42%		54 73% 54% 38%	69 74% 64% 36%		
6 mo.	n ACRPed 30 ACRPed 50 ACRPed 70			153 86% 78% 36%		55 76% 70% 55%							36 67%	129 74%			166 88% 72% 50%		44 61% 52% 33%			
7 mo.	n ACRPed 30 ACRPed 50 ACRPed 70																				26 35% 23% 19%	25 80% 72% 40%
12 mo.	n ACRPed 30 ACRPed 50 ACRPed 70		61 76% 66% 56%	141 91% 87% 54%				67 70% 63% 45%	419 81% 74% 62%			51 80% 71% 59%	31 77%	66 71%			133 89% 75% 58%		31 39% 35% 26%			
15 mo.	n ACRPed 30 ACRPed 50 ACRPed 70				131 92% 90% 77%						73 69 (95%) 68 (93%) 58 (80%)											
24 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	18 94% 94% 89%		95 95% 88% 62%			NR 97% 95% 92%					47 82% 79% 68%					76 81% 71% 51%	51 35 (69%) 34 (67%) 29 (57%)				
27 mo.	n ACRPed 30 ACRPed 50 ACRPed 70										41 36 (88%) 33 (80%) 30 (73%)											
30 mo.	n ACRPed 30 ACRPed 50 ACRPed 70																45 80% 72% 51%					
36 mo.	n ACRPed 30 ACRPed 50 ACRPed 70			56 89% 82% 52%								39 85% 76% 69%										

ACR Ped 30, 50, and 70 responses for patients treated with etanercept

39 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	20 15 (75%) 13 (65%) 10 (50%)
		38 32
48 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	30 32 97% 30 (94%) 92% 29 (90%) 68% 25 (79%)
51 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	15 13 (87%) 13 (87%) 10 (67%)
63 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	6 3 (50%) 3 (50%) 2 (33%)
96 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	11 100% 100% 100%

* denotes last observation carried forward (LOCF) analysis

¶ denotes ITT analysis

¹ data excludes systemic JIA patients

Abbreviations: mo. = months; n = sample size; ACR Ped = American College of Rheumatology Pediatric criteria for disease improvement; ETN = etanercept; MTX =

methotrexate

Author, Date	Papsdorf,	2011	Zuber, 2011	Otten, 2010	Horneff, 2009b	Prince, 2009	Horneff, 2004	Quartier, 2003	Lovell, (Phase	
Drug(s)	ETN + MTX	ETN	ETN ± MTX	ETN ± MTX	ETN 0.8mg/kg	ETN ± MTX	ETN ± MTX	ETN ± MTX	Placebo	ETN
n (baseline)	567	220	186	179	20	107	222	61	26	25
Treatment duration, months	NR	NR	72	15	3	75	30	15	7	7
Remission	298 (85%)	77 (35%)	23 (12%)	NR	NR	53 (50%)	64 (29%)	NR	NR	NR
Inactive disease	128 (23%)	38 (17%)	NR	69 (38%)	5 (25%)	NR	NR	NR	NR	NR
Disease flares	NR	NR	NR	NR	NR	NR	NR	9 (15%)	21 (81%)	7 (28%)

Rates of disease flares, remissions, and inactive disease for patients treated with etanercept

Abbreviations: n = sample size; ETN = etanercept; MTX = methotrexate; NR= not reported

ACR Ped 30, 50, 70 responses and rates of inactive disease for patients treated with infliximab

Auth	nor, Date	Ţ	ynjala, 2011		Ruperto, 2010	De Marco, 2007	F	Ruperto, 200	7	Gerloni, 2005
D	rug(s)	IFX + MTX	COMBO	MTX alone	IFX + MTX	IFX	IFX + MTX	Placebo	IFX + MTX	IFX + MTX
n (b	aseline)	20	20	20	78	78	60	62	59	24
3.5 mo.	n ACRPed 30 ACRPed 50 ACRPed 70						58 64% 29 (50%) 13 (22%)	59 49% 20 (34%) 7 (12%)		
8.5 mo.	n ACRPed 30 ACRPed 50 ACRPed 70								54 80% 70% 28 (52%)	
12 mo.	n ACRPed 30 ACRPed 50 ACRPed 70				75 64 (85%) 61 (81%) 45 (60%)	51 84% NR NR	55 67% 68% 52%			9 78% 44%
13.5 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	19 100% 100% 100%	20 85% 80% 70%	20 60% 60% 60%						
24 mo.	n ACRPed 30 ACRPed 50 ACRPed 70					30 90% NR NR				
48 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	27%			75 33 (44%) 30 (40%) 25 (33%)	14 86%				
Inactive d	lisease	13 (68%)	8 (40%)	5 (25%)	NŔ	NR	26 (42%)	25 (42%)	NR	NR
Treatmen months	t duration,	48	48	48	-	-	3.5	3.5	-	-

Abbreviations: mo. = months; n = sample size; ACR Ped = American College of Rheumatology Pediatric criteria for disease improvement; IFX = infliximab; MTX = methotrexate; COMBO = combination therapy (methotrexate, sulphasalazine and hydroxychloroquine); NR= not reported ACR Ped 30, 50, 70 responses and rates of inactive disease for patients treated with adalimumab

Aut	thor, Date	Trachana, 2011	Lovell, 2 (Phase				ovell, 2008 e 2 + Phase 3)	
I	Drug(s)	ADA ± MTX	ADA + MTX	ADA	Placebo	ADA	Placebo + MTX	ADA + MTX
n (baseline)	26	85	86	28	30	37	38
4 mo.	n ACRPed 30 ACRPed 50 ACRPed 70		83 94% 91% 71%	77 74% 64% 46%				
12 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	26 3 (12%) 2 (8%) 18 (69%)			28 32% 32% 29%	30 57% 53% 47%	37 38% 38% 27%	38 63% 63% 63%
24 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	18 2 (8%) 3 (12%) 10 (39%)					128 87% 84% 75%	
36 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	13 1 (4%) 6 (24%) 6 (24%)						
48 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	9 2 (8%) 3 (12%) 4 (15%)						
60 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	4 0 (0%) 2 (8%) 1 (4%)						
Disease f	lares	NR	NR	NR	20 (71%)	13 (4	3%) 24 (65%	5) 14 (37%)
Treatmer months	nt duration,	-	-	-	24		24 2	//

Abbreviations: mo. = months; n = sample size; ACR Ped = American College of Rheumatology Pediatric criteria for disease improvement; ADA = adalimumab; MTX = methotrexate; NR= not reported ACR Ped 30, 50, 70 responses and rates of inactive disease and disease flares for patients treated with abatacept

Au	thor, Date		Ruperto, 2010 (Phase 3)		Ruperto, 2008 (Phase 1)	Ruperto (Phas	
	Drug(s)	ABA continuous	ABA interrupted	Initial non- responders	ABA	ABA	Placebo
n (baseline)	58	. 59	. 36	190	60	62
4 mo.	n ACRPed 30 ACRPed 50 ACRPed 70				190 65% 50% 28%		
10 mo.	n ACRPed 30 ACRPed 50 ACRPed 70					49 82% 77% 53%	31 69% 52% 31%
21 mo.	n ACRPed 30 ACRPed 50 ACRPed 70	51 46 (90%) 45 (88%) 38 (75%)	47 41 (87%) 39 (83%) 35 (75%)	22 19 (73%) 14 (64%) 10 (46%)			
Inactive	disease	22/51 (43%)	11/47 (23%)	1/22 (4%)	NR	18 (30%)	7 (11%)
Disease	flares	NR	NR	NR	NR	12 (20%)	33 (53%)
Treatme months	nt duration,	21	21	21	-	10	10

Abbreviations: mo. = months; n = sample size; ACR Ped = American College of Rheumatology

Pediatric criteria for disease improvement; ABA = abatacept; NR= not reported

ACR Ped 30, 50, 70 responses and rates of inactive disease and disease flares for patients treated with rituximab

	Author, Date	Alexeeva, 2011
	Drug(s)	RTX
	n (baseline)	55
	n	55
3 mo.	ACRPed 30	98%
5 110.	ACRPed 50	50%
	ACRPed 70	42%
	n	55
6 mo.	ACRPed 30	98%
0 1110.	ACRPed 50	75%
	ACRPed 70	70%
	n	25
18 mo.	ACRPed 30	90%
10 1110.	ACRPed 50	75%
	ACRPed 70	75%
	n	25
24 mo.	ACRPed 30	98%
24 110.	ACRPed 50	93%
	ACRPed 70	93%
Remissi	ion	54 (98%)
Treatme	ent duration, months	24

Abbreviations: mo. = months; n = sample size; ACR Ped = American College of Rheumatology Pediatric criteria for disease improvement; RTX = rituximab

Author, date	Drug(s)	n (baseline)	Follow- up, months	TOTAL	Adverse events	Lack of efficacy	Disease remission	Complia nce/ protocol issues	Patient/ parent request	Physician decision	Lost to follow- up	Other
Mori, 2011	ETN	22	28	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Papsdorf, 2011	$ETN \pm MTX$	787	NR	NR	NR	NR	NR	NR	NR	NR	NR	NR
Sevcic, 2011	$ETN \pm MTX$	72	12	11 (15%)	2 (18%)	5 (46%)	2 (18%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	2 (18%)
Southwood, 2011	$ETN \pm MTX$	483	24*	100 (21%)	21 (4%)	53 (11%)	9 (2%)	14 (23%)	0 (0%)	0 (0%)	0 (0%)	3 (1%)
Zuber, 2011 Otten, 2010	ETN ± MTX ETN ± MTX	188 145	72 15	51 (27%) 10 (7%)	4 (2%) 3 (2.1%)	9 (5%) 6 (4%)	23 (12%) 1 (1%)	0 (0%) 0 (0%)	0 (0%) 0 (0%)	0 (0%) 0 (0%)	0 (0%) 0 (0%)	15 (8%) 0 (0%)
De Inocen cio, 2009	ETN ± MTX	71	12	12 (17%)	NR	NR	NR	NR	NR	NR	NR	NR
Giannini, 2009	MTX alone ETN alone ETN + MTX	197 103 294	36	131 (67%) 56 (54%) 162 (55%)	3 (2%) 2 (2%) 1 (0.5%)	36 (18%) 8 (8%) 59 (20%)	24 (12%) 8 (8%) 12 (4%)	8 (4%) 4 (4%) 13 (4%)	9 (5%) 5 (5%) 11 (4%)	4 (2%) 3 (3%) 4 (1%)	17 (9%) 10 (10%) 14 (5%)	30 (15%) 16 (16%) 48 (16%)
Halbig, 2009	$ETN \pm MTX$	114	24	24 (21%)	6 (5%)	10 (9%)	8 (7%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Horneff, 2009	ETN alone ETN + MTX	100 504	12	14 (14%) 51 (10%)	3 (3%) 14 (3%)	8 (8%) 22 (4%)	0 (0%) 6 (1%)	0 (0%) 0 (0%)	2 (2%) 6 (1%)	0 (0%) 0 (0%)	1 (1%) 3 (0.5%)	0 (0%) 0 (0%)
Horneff, 2009b	ETN 0.8mg/kg	20	3	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Prince, 2009	$ETN \pm MTX$	146	75	41 (28%)	6 (4%)	27 (19%)	8 (6%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Lovell, 2008	$ETN \pm MTX$	58	96	38 (66%)	4 (7%)	7 (12%)	0 (0%)	3 (5%)	8 (14%)	5 (9%)	3 (5%)	8 (14%)
Nielsen, 2008	$ETN \pm MTX$	40	12	NR	NR	NR	NR	NR	NR	NR	NR	NR
Lovell, 2006 Mori, 2005	ETN ± MTX ETN	58 22	48 3	24 (41%) NR	4 (7%) NR	6 (10%) NR	0 (0%) NR	2 (3%) NR	4 (7%) NR	3 (5%) NR	2 (3%) NR	3 (5%) NR
Horneff, 2004	$ETN \pm MTX$	256 ^ſ	30	36 (14%)	9 (3.5%)	11 (4%)	12 (5%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	4 (1.6%)
Lovell, 2003	ETN ± MTX (phase 3)	58	24	10 (17%)	1 (2%)	7 (12%)	1 (2%)	0 (0%)	0 (0%)	0 (0%)	1 (2%)	0 (0%)
Quartier, 2003	$ETN \pm MTX$	61	15	27 (45%)	12 (20%)	15 (25%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Lovell, 2000	ETN (phase 1) ETN (phase 2)	69 51	3 7	5 (7%) 25 (49%)	1 (1%) NR	2 (3%) NR	0 (0%) NR	0 (0%) NR	1 (1%) NR	0 (0%) NR	0 (0%) NR	1 (1%) NR
Tynjala, 2011	IFX COMBO MTX	60	13.5	13 (22%)	2 (3%)	11 (18%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)

APPENDIX 4 Rates of discontinuation for all included studies

Ruperto, 2010	IFX + MTX	78	51	42 (54%)	11 (14%)	8 (10%)	2 (3%)	0 (0%)	11 (14%)	8 (10%)	1 (1%)	1 (1%)
De Marco, 2007	IFX	78	36	54 (69%)	26 (33%)	26 (33%)	2 (2.5%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
Ruperto,	IFX + MTX (phase 1)	60	13	5 (8%)	1 (2%)	2 (3%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	2 (3%)
2007	IFX + MTX (phase 2)	62	9.5	8 (14%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1 (2%)	0 (0%)	0 (0%)	7 (12%)
	ÏFX (phase 3)	109	12	31 (28%)	6 (6%)	3 (3%)	0 (0%)	5 (5%)	2 (2%)	13 (12%)	0 (0%)	2 (2%)
Gerloni, 2005	IFX	24	12	5 (21%)	4 (17%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1 (4%)
Lamot, 2011	ETN + MTX or IFX + MTX	41	6	NR	NR	NR	NR	NR	NR	NR	NR	NR
Sauvain, 2010	ETN or IFX	106	24	NR	NR	NR	NR	NR	NR	NR	NR	NR
Tynjala, 2009	ETN IFX Switch	105 104 73	48 48 53*	46 (43%) 61 (59%) 43 (59%)	7 (7%) 23 (22%) 13 (18%)	29 (28%) 21 (20%) 26 (36%)	10 (10%) 17 (16%) 4 (5%)	0 (0%) 0 (0%) 0 (0%)				
Gerloni, 2008	ETN IFX	95 68	72 72	NR NR	18 (19%) 26 (28%)	NŔ NR	NŔ NR	NR NR	NR NR	NR NR	NR NR	NŔ NR
Trachana, 2011	ADA ± MTX	26	60	9 (35%)	2 (8%)	7 (27%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
	ADA (phase 1)	171	4	11 (6%)	3 (2%)	6 (3.5%)	0 (0%)	0 (0%)	1 (1%)	0 (0%)	1 (1%)	0 (0%)
Lovell, 2008	ADA + MTX (phase 1)	133	12	5 (4%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	1 (1%)	0 (0%)	0 (0%)	4 (3%)
	ADA ± MTX (phase 3)	128	26	NR	4 (3%)	NR	NR	NR	NR	NR	NR	NR
Ruperto, 2010	ABA	153	21	42 (27%)	3 (2%)	20 (13%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	3 (2%)	16 (10%)
Ruperto, 2008	ABA (phase 1) ABA (phase 2)	190 122	4 10	20 (11%) 42 (34%)	1 (1%) 0 (0%)	17 (9%) 41 (34%)	0 (0%) 0 (0%)	0 (0%) 0 (0%)	0 (0%) 1 (1%)	0 (0%) 0 (0%)	1 (1%) 0 (0%)	1 (1%) 0 (0%)
Alexeeva, 2011	RTX	55	24	31 (56%)	1 (2%)	8 (15%)	22 (40%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)	0 (0%)
llowite,	ANA (phase 1) ANA (phase 2)	86 50	3 7	36 (42%) 19 (38%)	4 (5%) 0 (0%)	27 (31%) 14 (28%)	0 (0%) 0 (0%)	0 (0%)	3 (4%) 0 (0%)	0 (0%) 0 (0%)	0 (0%) 0 (0%)	2 (2%) 5 (10%)
2009	ANA (phase 2) ANA (phase 3)	50 44	7 12	7 (16%)	0 (0%)	0 (0%)	0 (0%)	0 (0%) 0 (0%)	0 (0%) 3 (7%)	0 (0%) 2 (4%)	0 (0%) 2 (4%)	5 (10%) 0 (0%)

* represents mean duration of follow-up

Abbreviations: n = sample size; MTX = methotrexate; ETN = etanercept; IFX = infliximab; ADA = adalimumab; ABA = abatacept;

ANA = anakinra; RTX = rituximab; COMBO = combination therapy (methotrexate, sulphasalazine and hydroxychloroquine); NR = not reported

Author, Date	Drug(s)	n	Treatment duration, months	Total adverse events	Non serious adverse events	Serious adverse events	Deaths
Mori, 2011	ETN	22	28	22	NR	NR	0
Sevcic, 2011	ETN ± MTX	72	12	13	NR	NR	0
Southwood, 2011	ETN ± MTX	483	24*	21	NR	NR	2
Zuber, 2011	ETN	188	72	1162 (2.96ppy)	NR	23 (0.02ppy)	0
Otten, 2010	ETN	145	15	NR	NR	3	NR
	MTX alone	197		71	48	0.05ppy	0
Giannini, 2009	ETN alone	103	36	42	23	0.07ppy	0
	ETN + MTX	294		137	67	0.06ppy	0
Halbig, 2009	ETN	114	24	8	7	1	0
Horneff, 2009	ETN alone ETN + MTX	100	12	21 (0.15ppy)	17	4	0
Horneff, 2009b	ETN + MTA ETN 0.8mg/kg	504 20	3	169 (0.16ppy) 74	121 37	48 37	0 0
			-			9	-
Prince, 2009	ETN	146	75	65	56	(0.029ppy)	3
Lovell, 2008	ETN	58	96	NR	NR	(0.12ppy) (0.12ppy)	0
Nielsen, 2008	$ETN \pm MTX$	40	12	NR	NR	NR	NR
Lovell, 2006	ETN	58	48	NR	NR	29 (0.13ppy)	0
Mori, 2005	ETN	22	3	22	NR	NR	0
Horneff, 2004	ETN	256	30	69	57	12	0
Lovell, 2003	ETN (phase 3)	58	24	NR	NR	13	0
Quartier, 2003	ETN ± MTX	61	15	67	55	12	0
Lovell, 2000	ETN (phase 1)	69	3	130	128	2	0
T . 1 . 0044	IFX		40 5	100 (4.8ppy)	99	1	0
Tynjala, 2011	COMBO	60	13.5	106 (5.4ppy)	104	2	0
Ruperto, 2010	MTX IFX + MTX	78	51	111 (6.5ppy) 71	93 54	18 17	0 0
De Marco, 2007	IFX	78	36	/ 1	39	17	2
	IFX + MTX (phase 1)	60	13	58 patients	39 patients	19 patients	2
Ruperto, 2007	IFX + MTX (phase 2)	62	9.5	54 patients	49 patients	5 patients	0
Gerloni, 2005	IFX	24	12	12	NR	NR	NR
Lamot, 2011	ETN+MTX or IFX+MTX	41	6	17 (3 ETN)	NR	NR	NR
Sauvain, 2010	ETN or IFX	106	24	24 (9 ETN)	NR	NR	0

APPENDIX 5 Adverse events (serious and non-serious) and deaths reported

	ETN	105	48	NR	NR	NR	NR
Tynjala, 2009	IFX	104	48	NR	NR	NR	NR
	Switch	73	53*	NR	NR	NR	NR
Gerloni, 2008	ETN	95	72	133	NR	NR	0
Genoni, 2000	IFX	68	72	71	NR	NR	0
Trachana, 2011	ADA ± MTX	26	60	0.13ppy	127/68	0.03ppy	1
	ADA ± MTX (phase 1)	171	4	899	892	7	0
Lovell, 2008	ADA ± MTX (phase 2)	133	12	713	712	1	0
	ADA ± MTX (phase 3)	128	26	1275	1266	9	0
Ruperto, 2010	ABA	153	21	195	77 patients	23 patients	0
5	ABA (phase 1)	190	4	133 patients	127 patients	6 patients	0
Ruperto, 2008	ABA (phase 2)	122	10	71 patients	69 patients	3 (2 placebo)	0
Alexeeva, 2011	RTX	55	24	101	NR	12	0
	ANA (phase 1)	86	3	80 patients	NR	3 patients	0
llowite, 2009	ANA (phase 2)	50	7	35 patients	NR	0 patients	0
	ANA (phase 3)	44	12	30 patients	NR	3 patients	0

* represents mean duration of follow-up

Abbreviations: MTX = methotrexate; ETN = etanercept; IFX= infliximab; ANA = anakinra;

ADA = adalimumab; ABA = abatacept; RTX = rituximab; n= sample size; ppy=per patient year