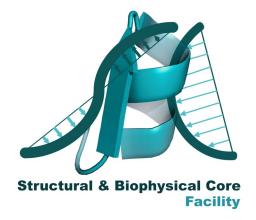
### Introduction

The StarGazer-2 (*Epiphyte3*) instrument is designed for low-volume, 384-well optical bottom microplates used for high throughput data collection.




• Label-free thermo-aggregation assay using differential static light scattering (DSLS) at 620 nm.

### **Protein Applications of the StarGazer2:**

| Technical Specifications |                   |
|--------------------------|-------------------|
| Sample volume            | 2.5 - 50 μL       |
| Temperature range        | 10 - 95 °C        |
| Heating rate             | 0.1 - 5 °C/minute |
| Protein conc. range      | 0.05 - 1 mg/mL    |
| DSLS laser wavelengths   | 620 nm            |
| DSLS resolution          | ~ 8 kDa mean      |
| Number of Samples        | 1 - 383           |

- Temperature gradient and isothermal-based experiments
- Optimal buffer screening
- Compound stabilization / destabilization screening and dose response characterization
- Nucleic acid and peptide binding characterization
- Evaluation of protein refolding conditions
- Chemical fingerprinting
- Formulation development of therapeutic monoclonal antibodies
- Comparison of stability of SNP proteins



### **Greg Wasney**

Manager, Structural & Biophysical Core Facility
Peter Gilgan Centre for Research & Learning
The Hospital for Sick Children
686 Bay Street, Rm. 21.9708
Toronto, ON. M5G 0A4

Email: <a href="mailto:greg.wasney@sickkids.ca">greg.wasney@sickkids.ca</a>

Office: 416.813.7209 Office Internal Ext. 307209 Lab: 416-813-7654 ext. 309442

http://lab.research.sickkids.ca/sbc-facility/



## The Hospital for Sick Children's

# Structural & Biophysical Core Facility



## StarGazer-2— Epiphyte3

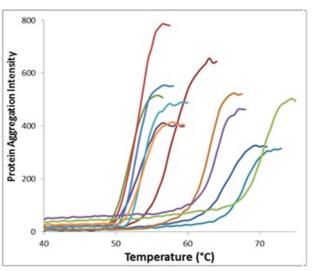
Differential Static Light Scattering (DSLS) Protein Thermo-denaturation

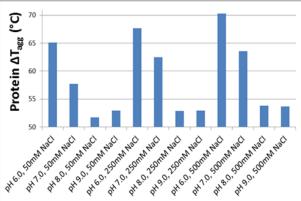
### **Application Note #1:**

### Optimal protein buffer screen

- Greater long/short-term stability
- Reach higher concentration, recover low solubility proteins
- · Better binding / functional activity
- Promotion of protein crystallization

# StarGazer-2— Protein Thermodenaturation Assays


### **Experiment Type 1: Temperature**


### **Gradient Denaturation**

Protein Sample: 0.5 mg/mL, 10 µL

Temperature ramp rate: 1 °C/min, 25 °C to 95 °C Buffers: 100 mM MES pH 6.0; 100 mM HEPES pH

7.0, 8.0; 100 mM Glycine pH 9.0 **Salt:** 50, 250, 500 mM NaCl



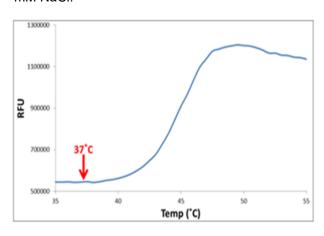


Best: Low pH, High [NaCl]

The protein is stabilized by buffers with lower pH and higher NaCl concentrations.

# **Experiment Type 2: Isothermal Denaturation**

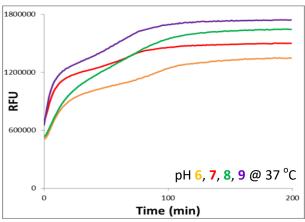
Protein Sample: 0.5 mg/mL, 10 µL


**Isothermal denaturation** @ 37 °C for 200 min **Buffers:** 100 mM MES pH 6.0; 100 mM HEPES

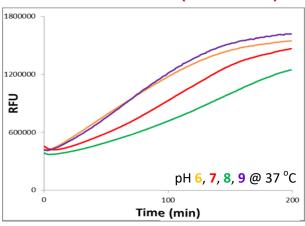
pH 7.0, 8.0; 100 mM Glycine pH 9.0

Salt: 50, 250, 500 mM NaCl

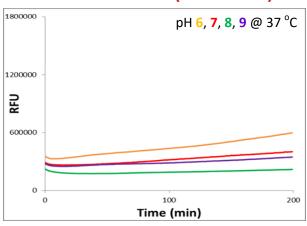
**Sypro Orange:** 5X


Performed initial temperature gradient experiment using DSF (differential scanning fluorometry) to determine temperature of denaturation using a midrange buffer of 100 mM HEPES, pH 7.5, 250 mM NaCl.




Based on the protein thermo-denaturation gradient curve above, an isothermal denaturation temperature of 37  $^{\circ}$ C should be used (2  $^{\circ}$ C below the onset of thermos-denaturation at 39  $^{\circ}$ C). Therefore, the isothermal temperature was held at 37  $^{\circ}$ C for 200 minutes.

The protein is stabilized by buffers with higher NaCl concentrations while no significant changes are observed with varying pH.


#### Fast Denaturation (50mM NaCl)



#### Slower Denaturation (250mM NaCl)



### Little Denaturation (500mM NaCl)

