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Pan-cancer ion transport signature reveals functional
regulators of glioblastoma aggression
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Abstract

lon channels, transporters, and other ion-flux controlling proteins,
collectively comprising the "ion permeome”, are common drug
targets, however, their roles in cancer remain understudied. Our
integrative pan-cancer transcriptome analysis shows that genes
encoding the ion permeome are significantly more often highly
expressed in specific subsets of cancer samples, compared to pan-
transcriptome expectations. To enable target selection, we identi-
fied 410 survival-associated IP genes in 33 cancer types using a
machine-learning approach. Notably, GJB2 and SCN9A show pro-
minent expression in neoplastic cells and are associated with poor
prognosis in glioblastoma, the most common and aggressive brain
cancer. GJB2 or SCN9A knockdown in patient-derived glioblastoma
cells induces transcriptome-wide changes involving neuron pro-
jection and proliferation pathways, impairs cell viability and tumor
sphere formation in vitro, perturbs tunneling nanotube dynamics,
and extends the survival of glioblastoma-bearing mice. Thus,
aberrant activation of genes encoding ion transport proteins
appears as a pan-cancer feature defining tumor heterogeneity,
which can be exploited for mechanistic insights and therapy
development.
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Introduction

Developing rational cancer therapies is a challenge as broad-
spectrum therapies fail to target tumor heterogeneity and multiple
avenues of cancer progression (Dagogo-Jack and Shaw, 2018).
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Molecular profiling as standard of care has advanced precision
treatment regimens for many cancer types (Malone et al, 2020).
Despite these advances, therapy development remains a long and
uncertain process. Conversely, repurposing approved drugs is an
appealing alternative with many successes (Zhang et al, 2020b),
such as the use of the type II diabetes drug metformin as an anti-
cancer agent (Saraei et al, 2019).

Ton channels permeate ions across membranes based on ionic
electrochemical gradients. Voltage-gated ion channels are regulated by
changes in transmembrane voltage potential and are involved in a
variety of physiological processes, such as neuronal signal transmission
and epithelial cell secretion. Ligand-gated ion channels are regulated
by chemical messengers such as neurotransmitters at neural synapses
and neuro-muscular junctions. Ion transporters actively move ions
across membranes through energy consumption and conformational
change. Gap junctions create intercellular connections to enable the
passage of ions and small molecules between cells. Collectively, we
refer to these proteins as the ion permeome (IP). The ion permeome is
extensively studied in the context of human disease and includes many
drug targets. For example, a common therapy for renal hypertension
and cardiovascular disease involves Ca®* jon channel blockers
(Hayashi et al, 2007; Triggle, 2006). IP inhibitors are frequently used
as local anaesthetics, such as lidocaine and carbamazepine (Skerratt
and West, 2015).

The ion permeome is emerging as a crucial regulator of
tumorigenesis (Prevarskaya et al, 2018). Transient receptor potential
(TRP) channels promote autophagy of kidney cancer (Hall et al, 2014),
oxidative stress resistance in breast and lung cancer (Takahashi et al,
2018), and proliferation in esophageal and HRAS-driven cancers (Jung
et al, 2019; Shi et al, 2009). Mitochondrial ion channels have been
targeted to induce cancer apoptosis (Leanza et al, 2017; Yagoda et al,
2007), while the ORALI family of store-operated calcium channels are
involved in prostate cancer oncogenesis (Dubois et al, 2014). Breast
cancer metastasis is orchestrated by TRP (Middelbeek et al, 2012),
ORAI (Chantome et al, 2013; Yang et al, 2009), and potassium
channels (Mu et al, 2003; Payne et al, 2022; Sun et al, 2016). The
chloride channel CFTR and voltage-gated potassium channel KCNQ1
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were described as tumor suppressors in gastrointestinal cancers
(Rapetti-Mauss et al, 2017; Than et al, 2014, 2016; Yamada et al, 2018).
Recently, the sodium leak channel NALCN was identified as a
regulator of gastric, pancreatic, and prostate cancer dissemination
(Folcher et al, 2023; Rahrmann et al, 2022). In brain cancer, we found
that potassium channel EAG2 and chloride intracellular channel
CLIC1 promote medulloblastoma growth by regulating cell volume-
gated mitosis (Francisco et al, 2020; Huang et al, 2012). EAG2
promotes medulloblastoma metastasis by reducing local cell volume at
the trailing edge of migrating tumor cells (Huang et al, 2015). EAG2
and Kvp2 form a potassium channel complex to regulate tumor-
neuron interaction and promote growth, invasion, and chemoresis-
tance of glioblastoma (GBM) (Dong et al, 2023). The mechanosensi-
tive ion channel PIEZO1 senses tissue stiffness to drive GBM
aggression (Chen et al, 2018). PIEZO2 regulates the blood-tumor
barrier to modulate the chemotherapy sensitivity of medulloblastoma
(Chen et al, 2023). Other studies further characterized ion channels in
regulating tumor cell-intrinsic properties and cell-microenvironment
interactions, establishing some as therapeutic targets in brain cancer
(Hausmann et al, 2023; Hitomi et al, 2015; Huang and Jan, 2014;
Mulkearns-Hubert et al, 2019; Ransom and Sontheimer, 2001; Turner
and Sontheimer, 2014). Despite the reported roles of some ion
channels in cancer pathways, the transcriptomic landscape and clinical
significance of IP genes in human cancer has not been systematically
explored to date.

Glioblastoma is the most common and deadliest form of
primary brain cancer. Despite multi-modal therapy combining
surgery, radiotherapy, and chemotherapy using the DNA alkylating
agent temozolomide, median patient survival is only 15 months
(Ostrom et al, 2022). GBM is characterized by genetic, molecular,
and phenotypic inter- and intra-tumoral heterogeneity. Molecular
subtypes of mesenchymal, proneural, and classical GBM have
specific genomic mutations, gene expression signatures, and clinical
characteristics (Brennan et al, 2013; Verhaak et al, 2010; Wang et al,
2017). Individual GBMs harbor diverse tumor and stromal cell
populations. This tremendous degree of tumor heterogeneity drives
therapy resistance and tumor recurrence (Lan et al, 2017; Meyer
et al, 2015). As such, there is an urgent need to identify actionable
therapeutic targets and treatment opportunities.

Here we analyzed the transcriptomic landscape and clinical
associations of IP genes across 10,000 human cancer samples. We
discovered that IP genes were excessively upregulated in subsets of
tumors significantly more than expected, revealing a novel aspect of
tumor heterogeneity. Using machine learning, we established a
catalogue of IP genes whose elevated expression associated with
patient survival outcomes. In GBM, we focused on two IP genes,
GJB2 and SCNYA, and demonstrated their roles in promoting GBM
aggression using patient-derived tumor cells and xenograft models.
Our study highlights alterations in the IP as a cancer hallmark and
provides a useful resource for functional studies of IP genes for
therapeutic and biomarker development.

Results
Transcriptomic landscape of the ion permeome in cancer

To interrogate IP in cancer, we analyzed 9352 cancer transcrip-
tomes of 33 cancer types from the Cancer Genome Atlas (TCGA)
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PanCanAtlas project (Cancer Genome Atlas Research et al, 2013)
(Table EV1). We studied 276 high-confidence druggable IP genes
from the Guide to Pharmacology database (Harding et al, 2022)
(Fig. EVI1; Dataset EV1). We first investigated pan-cancer
expression of IP genes using dimensionality reduction and found
clustering of cancer samples based on tissue and organ systems
(Fig. 1A). For example, GBM and low-grade glioma (LGG)
clustered together, as expected, as did kidney cancer subtypes
(renal cell carcinoma (KIRC), renal papillary cell carcinoma
(KIRP), kidney chromophobe (KICH)). Organ-specific clusters
were also apparent, such as digestive tract-related cancers with
colon (COAD), rectum (READ), pancreatic (PAAD), and stomach
adenocarcinomas (STAD). Some cancer types also showed distinct
clusters, such as skin cutaneous melanomas (SKCM) and uveal
melanomas (UVM). Tissue- and disease-type specific patterns of IP
gene expression suggest their roles in multiple cancer types.

Transcriptomic analysis revealed dramatic patterns of IP gene
overexpression in individual cancer samples. First, we considered
IP genes that were expressed in most samples of a given cancer
type. A typical IP gene showed 10-fold upregulation in a minor
subset of samples (9%) compared to other samples of the same
cancer type (Fig. 1B). This affected 49 (18%) IP genes per cancer
sample on average, based on non-parametric Tukey’s outlier
analysis (Tukey, 1977) (Fig. 1C). Widespread overexpression of
IP genes was identified in most cancer types and in the pan-cancer
cohort. Next, we considered the subset of IP genes with switch-like
activation, defined as genes with zero expression in most cancer
samples and non-zero expression in less than half of the samples of
a given cancer type. Switch-like activation affected an additional
18% of IP genes on average (Fig. 1D,E; Appendix Fig. Sla). A
typical IP gene was expressed in hundreds of copies in high-
expression group of cancer samples (median 290 FPKM-UQ), while
some genes exceeded these levels by several orders of magnitude
(10*-10° FPKM-UQ) (Fig. 1F).

To evaluate the significance of IP overexpression in cancer, we
repeated the outlier analysis by re-sampling protein-coding genes
(PCG) as controls. In all cancer types, overexpression of IP genes
was significantly more pronounced compared to all PCGs (IP: 10-
fold increase, 9% of samples vs. PCG: 3.7-fold increase, 5% of
samples; P < 1075, permutation test) (Fig. 1B; Appendix Fig. S1b).
We repeated the outlier analysis using two other major drug target
classes: kinases and G protein-coupled receptors (GPCRs).
Aberrant overexpression of IP genes significantly exceeded the
overexpression of kinase genes. Interestingly, GPCR genes were
also highly upregulated in most cancer types, although the extent
and frequency of upregulation among IP genes was often even
higher (Appendix Fig. S1). Outlier analysis of GBM subtypes also
confirmed that overexpression patterns of IP genes exceeded PCGs,
kinases, and GPCRs in classical, mesenchymal, and proneural
GBMs (Fig. EV2A). In summary, IP genes undergo dramatic
upregulation in a fraction of cancer samples, suggesting that these
contribute to tumor heterogeneity and disease mechanisms.

Survival associations of ion permeome genes in
multiple cancer types

To study the importance of IP genes in cancer pathology, we

systematically prioritized IP genes that significantly associated with
patient survival in individual cancer types, using a machine

© The Author(s)
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learning approach adapted from our previous study (Isaev et al,
2021). Briefly, we trained a set of Cox proportional-hazards
(CoxPH) survival regression models on subsets of cancer samples
with IP gene expression profiles as features, followed by
regularisation that selected the most informative IP genes in each
model (Fig. EV3). We nominated recurrently selected IP genes
from the models as our top candidates. Cancer types were analyzed
separately to identify IP genes, and either overall survival (OS) or
progression-free survival (PES) information was used as recom-
mended previously (Liu et al, 2018) (Table EV1). We benchmarked

© The Author(s)

with highly-elevated (outlier) expression

the analysis by randomly shuffling patient survival data, and as
expected, found significantly fewer and weaker associations with IP
genes, suggesting that our computational framework is appro-
priately calibrated (Appendix Fig. S2).

We identified 206 IP genes with 410 associations with patient
survival in 33 cancer types (Fig. 2A,B). We found 12 IP genes per
cancer type on average, while most IP genes with prognostic
associations were found in only one or two cancer types (74%)
(Table EV2; Dataset EV2), which is consistent with tissue-specific
clustering of IP expression in cancer (Fig. 1A). Most survival
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Figure 1. Highly elevated expr of ion per genes in cancer.
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(A) Dimensionality reduction analysis of cancer transcriptomes using ion permeome (IP) gene expression shows tissue-specific clustering in cancer. A UMAP projection of
276 IP genes in 33 cancer types from TCGA is shown. (B) IP genes are highly upregulated in subsets of cancer samples. Two-dimensional density plots show the joint
distribution of gene expression increase (fold-change (FC), log2) and the fraction of cancer samples affected. IP genes (left) are compared to three gene sets as controls
(middle to right): (i) all protein-coding genes, (ii) kinases, and (iii) GPCRs (i.e., two major classes of drug targets). Dashed green lines show median values. Control gene
sets were down-sampled to IP gene counts and representative results with median FC are shown (n =10,000). P-values from permutation tests are shown. (C) Histogram
of IP genes with high expression in each cancer type. Fraction of IP genes with outlier expression for each cancer sample is shown. (D) Switch-like expression patterns of IP
genes across all cancer types. 2D density plot shows the fraction of cancer samples with non-zero IP gene expression and the corresponding median non-zero expression
values for each gene. (E) Pie charts show frequency of switch-like expression patterns among IP genes and all genes, kinases, and GPCRs as controls. (F) Expression levels
of IP genes in the groups of cancer samples defined by outlier expression (red). Control gene sets (white) were down-sampled to IP gene counts over 10,000 iterations and
representative results with median expression are shown. Source data are available online for this figure.

associations were found in prostate cancer and luminal-A breast
cancer (23 and 24, respectively). Elevated IP gene expression
associated with worse patient prognosis in most IP genes that we
identified (240/410 or 59%). Several top-ranking IP genes were
found in multiple cancer types, including ACCN2, GRIN2D, and
TRPV3 that associated with poor prognosis in six cancer types, and
P2RX6 in seven cancer types (Appendix Fig. S3a). P2RX6 encodes a
P2X receptor that increases renal cancer cell migration and
invasion (Gong et al, 2019). ACCN2 has been shown to promote
tumor growth and metastasis in breast cancer (Gupta et al, 2016),
and GRIN2D is an angiogenic tumor marker in colorectal cancer
(Ferguson et al, 2016). TRPV3 encodes a transient receptor
potential cation-selective channel involved in temperature regula-
tion pathways (Xu et al, 2002). Collectively, the catalogue of
prognostic associations of the IP is a useful resource for functional
studies and biomarker discovery.

High GJB2 or SCN9A expression associates with poor
survival of GBM patients

We focused on IP genes in GBM, a fatal form of brain cancer with
an unmet need for target identification. Four high-confidence IP
genes were found, all of which were highly expressed in higher-risk
patients: gap junction GJB2 involved in non-syndromic hearing
impairments (Snoeckx et al, 2005), voltage-gated sodium channel
SCNYA involved in pain sensation in peripheral nervous system
(Cox et al, 2006), aquaporin AQP9 with roles in kidney cancer (Xu
et al, 2019), and calcium-activated potassium channel KCNN4 with
roles in GBM (D’Alessandro et al, 2013; Grimaldi et al, 2016;
Hausmann et al, 2023). Given its reported functions in GBM,
KCNN4 served as a positive control of our analysis. We confirmed
the prognostic signals of these genes in multivariate analyses that
accounted for patient age and sex (Fig. 3A). Besides GBM, GJB2,
and SCN9A expression associated with poor prognosis in low-grade
glioma, kidney, and uterine cancer (Appendix Fig. S3b), lending
further confidence to these genes. We selected G/B2 and SCN9A for
further studies in GBM.

We examined GJB2 and SCN9A expression in overall survival
(OS) risk groups of GBM. For GJB2, GBM patients with high
outlier expression had the worst prognosis, while for SCN9A, GBM
patients with above-median gene expression associated with poor
prognosis (Fig. 3B; Appendix Fig. S4a). For these genes, patient age
was consistently highlighted as a prognostic covariate in our gene
prioritisation. To study the age component in detail, we analyzed
three age-based groups of GBMs and found strongest prognostic
signals of G/B2 and SCN9A in the middle age group (56-66 years,
51 patients), while the other age groups showed attenuated signals

4 The EMBO Journal

(Appendix Fig. S4a). However, no significant survival differences
were found in the middle age group compared to others, perhaps
suggesting an interaction with the candidate genes (Fig. EV2D).
The middle age group marks the greatest risk increase of presenting
GBM, with twice the incidence rate compared to younger
individuals and representing a third of the TCGA GBM cases
within a decade of age (Ostrom et al, 2022).

We validated the survival associations of GJB2 and SCN9A
expression in two independent GBM cohorts, including 136 samples
from the Glioma Longitudinal Analysis (GLASS) (Glass Consor-
tium, 2018) and 55 samples from an earlier microarray dataset
(Freije et al, 2004) (Fig. 3B). High GJB2 or SCN9A expression
associated with poor prognosis in both datasets based on median
dichotomisation (P < 0.1; HR > 1.5), while weaker associations with
highly elevated expression were also detected (Appendix Fig. S4b).
When considering GBM subtypes or age groups separately, no
significant survival differences for GJB2 and SCN9A were found,
except for an association with high SCN9A expression and worse
prognosis in mesenchymal GBMs (Fig. EV2B). No significant
associations between GBM subtypes and patient age groups were
apparent (Fig. EV2C). Analyses of GBM subtypes have limited
sample sizes and should be repeated in larger cohorts. Collectively,
high expression of G/B2 and SCN9A in high-risk GBMs implicate
these genes as targets for functional experiments.

GJB2 and SCN9A expression is enriched in neoplastic
cells and aggressive GBM subtypes

We characterized GJB2 and SCN9A expression in GBM tumor
regions and subtypes. First, we analyzed the anatomic transcrip-
tional dataset of the Ivy GBM atlas (Puchalski et al, 2018) (Fig. 3C).
Regions of microvascular proliferation showed reduced GJB2 and
SCNYA expression (log2FC < —2.9, FDR < 1.4 x 107%). These repre-
sent a GBM hallmark comprising both resident endothelial cells
and differentiated malignant cells (Wang et al, 2010a). GJB2 and
SCN9A expression was lower in stromal fractions, which primarily
include non-malignant fibroblasts (Clavreul et al, 2014). Higher
GJB2 expression appeared near the necrotic centers of GBMs in
pseudo-palisading and peri-necrotic zones. Thus, GJ/B2 and SCN9A
are downregulated in anatomical regions with fewer tumor cells,
while GJB2 is upregulated in highly proliferative and motile regions
of GBMs.

Next, we studied GJB2 and SCN9A in transcriptomic and
methylation subtypes of GBM (Brennan et al, 2013; Colaprico et al,
2016) (Fig. 3C). GJB2 expression was higher in mesenchymal GBM
and related methylation subtype class-1 (log2 FC > 1.2, FDR < 0.05)
(Brennan et al, 2013). Patients with mesenchymal GBM have worse

© The Author(s)
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Figure 2. Patient survival associations of IP genes in cancer.

Alexander T Bahcheli et al

(A) 206 IP genes with 410 patient survival associations in 33 cancer types, prioritized by their detection frequency in our elastic net framework (X-axis). IP genes
associated with patient survival in glioblastoma (GBM) are labeled. (B) Catalogue of survival-associated IP genes in individual cancer types. Bar plots show median
univariate hazard ratios (HRs) and error bars show 95% confidence intervals (top). Tile plots show median expression values of IP genes (bottom). Z-transformed relative
expression values of individual IP genes compared to all protein-coding genes are shown. Sample sizes of HRs are shown in Table EV1. Source data are available online for

this figure.

prognosis due to highly infiltrative and aggressive tumors (Verhaak
et al, 2010). Lower SCN9A expression was found in classical GBM
based on both classifications. Analysis of genomic alterations
showed that SCN9A expression was associated with chromosome
19 and 20 co-gains, which are found in many classical and some
mesenchymal GBMs (Brennan et al, 2013). Lower SCN9A
expression associated with MGMT promoter methylation, an
indicator of therapeutic response to temozolomide treatment
(Rivera et al, 2010).

We then determined the cell types expressing G/B2 and SCN9A
using single-cell transcriptomics datasets of IDH1/2 wildtype GBMs
(Neftel et al, 2019) and IDHI/2-mutant and -wildtype GBMs
(Johnson et al, 2021) (Fig. 3D). Both genes were expressed in
subsets of neoplastic cells while their expression was undetectable
in non-cancer cells, collectively showing an enrichment towards
cancer cell fraction in both studies (P < 107°, Fisher’s exact test).
Among neoplastic cells, GJB2 expression was higher in differ-
entiated GBM cells and lower in proliferative stem-like cells. Higher
GJB2 expression in differentiated cells was characteristic of IDH-
wildtype GBMs with worse prognosis (Johnson et al, 2021), while
reduced GJB2 expression and enrichment of stem-like cells was
apparent in IDH-mutant gliomas with improved prognosis (Cohen
et al, 2013). Compared to GJB2, SCN9A expression was more
uniform across neoplastic cell types. Besides these, GJB2 was
expressed in myeloid cells while SCN9A was expressed in
macrophages. Other non-cancer cells showed little or no expression
of the two genes.

We compared GJB2 and SCN9A expression in normal brain
samples relative to their expression in GBMs using Tukey’s outlier
analysis (Fig. 3E). Expression profiles of 13 types of normal brain
samples from 339 individuals were retrieved from the Genotype-
Tissue Expression (GTEx) project (GTEx Consortium, 2013). As
expected, the GBMs we classified as outliers showed significantly
higher expression of GJB2 and SCN9A than normal brain samples:
GJB2 ranked among the 24% most highly expressed genes in the
outlier GBM group, while it ranked much lower in normal brain
tissues and non-outlier GBMs (i.e., in top 70%; P=1.5x10"",
Mann-Whitney U-test). Similarly, SCN9A expression was signifi-
cantly higher in outlier GBMs compared to non-outlier GBMs and
normal tissues (45% vs. 75%, P =1.1 x 10~°). In contrast, G/B2 and
SCNY9A expression in non-outlier GBMs was comparable to normal
brain tissues.

Lastly, we studied genomic alterations and DNA methylation of
GJB2 and SCN9A in TCGA datasets (Fig. EV4). We observed no
associations with patient survival and DNA promoter methylation,
protein-coding mutations, or copy number alterations (CNAs) (Fig.
EV4A). Only few protein-coding SNVs were found: SCN9A
mutations were found in six GBMs while GJ/B2 had none (Fig.
EV4CQC). Interestingly, we found a co-occurrence of CNAs affecting
SCN9A and IDHI1 (P=6.23 x 10~%, Fisher’s exact test) as the two
co-located genes were often affected by the same CNAs in 20/145
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GBM samples (Fig. EV4D). While IDHI is described through
prognostic point mutations such as IDH1 R132H, the roles of IDHI
CNAs or interactions with SCN9A are not established to date.
Opverall, the few genetic alterations of GJ/B2 and SCN9A in GBM are
likely not responsible for the high expression or patient survival
associations of the genes and gene-regulatory or epigenetic
mechanisms of activation are more plausible. Taken together,
GJB2 and SCN9A expression shows inter- and intra-tumoral
heterogeneity in GBM. Their higher expression in malignant cell
types and clinically relevant GBM subtypes implicate the functional
significance of these two IP genes in GBM.

GBJ2 or SCN9A knockdown deregulates proliferative and
neuron projection pathways

Next, we interrogated the functions of GJ/B2 and SCN9A using
shRNA-mediated knockdown in the patient-derived GBM cell line
G729 (Meyer et al, 2015; Park et al, 2017). Transcriptome-wide
profiling revealed dramatic changes induced by GJB2 and SCN9A
knockdown, with differential expression of 4647 and 2088 genes,
respectively, including 640 commonly deregulated genes (absolute
FC>1.25, FDR <0.05) (Fig. 4A; Appendix Fig. S5a). As expected,
GJB2 and SCNYA were significantly downregulated by knockdown
(Fig. 4E). To interpret transcriptomic changes through patient
GBMs in TCGA, we grouped patient GBMs by median GJB2 or
SCN9A expression and uncovered hundreds of differentially
expressed genes (Appendix Fig. S5b).

To define the genes and pathways associated with GJB2 or
SCNY9A knockdown, we jointly analyzed the four gene lists from
patient-derived GBM cells and patient GBMs to identify integrative
pathway enrichments using the ActivePathways method (Pacz-
kowska et al, 2020). We discovered four major functional themes
with differential expression: cell proliferation, neural and brain
development, signal transduction pathways, and cytoskeletal and
extra-cellular matrix processes, with 350 significant processes and
pathways in total (FWER <0.05; ActivePathways) (Fig. 4B; Table
EV3). These pathways included cancer hallmarks of cell prolifera-
tion, cell cycle deregulation, DNA replication, and neural apoptosis,
as well as signal transduction cascades such as the Wnt pathway.
Cancer proliferation and invasion genes were downregulated,
including proliferation marker gene MKI67 with prognostic value
in glioma (Torp, 2002), nerve growth factor receptor NGFR
involved in GBM invasion (Ahn et al, 2016), and long non-coding
RNA MALATI with tumor suppressive function in GBM (Han
et al, 2016) (Fig. 4E). The enriched pathways were supported by
multiple transcriptional signatures, indicating that the target
pathways of these two IP genes converge across our patient-
derived GBM cells and patient GBMs.

We focused on a group of neuron projection processes that
associated with both genes in our integrative pathway analysis. These
included broader processes, such as regulation of neuron projection
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Figure 3. Survival associations and molecular features of GJB2 and SCN9A in GBM.

(A) Multivariate hazard ratios of IP genes were prioritized in 150 GBM samples. Error bars reflect 95% confidence intervals. (B) Kaplan-Meier plots of overall survival (OS)
in GBM patients grouped by GJB2 or SCN9A expression in TCGA (left) and two validation datasets (middle, right). Bar plots show gene expression in risk groups
determined by Tukey outlier analysis for GJB2 and median dichotomisation for SCN9A. Wald P-values, Univariate HR values, and sample counts are shown. Patient age in
TCGA was included as a covariate. (C) GJB2 and SCN9A expression associates with GBM subtypes and anatomical regions. FDR-corrected P values from Mann-Whitney
U-tests are shown. (D) GJB2 and SCN9A expression in single glioma cells from two single-cell RNA-seq datasets (Johnson et al, 2021; Neftel et al, 2019) shown as UMAP
plots. Cells are colored by expression of GJB2 (left) and SCN9A (middle). Cell type classifications were derived from the original studies (right). P-values from
Mann-Whitney U-tests reflect enriched expression in malignant cell types and the fraction of total cells expressing GJB2 or SCN9A. (E) Comparison of GJB2 and SCN9A
expression in GBMs and normal brain samples from GTEx. Quantile-normalized median expression values with confidence intervals are shown (£1s.d). For GBM outlier
groups, 13 samples for SCN9A and 18 samples for GJB2 are included. All other groups include at least 100 samples. Source data are available online for this figure.

development (FDR=1.4x10"") and specific enrichments such as
axonogenesis and dendrite development (Fig. 4C; Table EV4). To
prioritise individual genes in these pathways, we performed a
complementary network analysis that examined gene interactions.
We reconstructed a protein-protein interaction (PPI) network that
captured 102 of the differentially expressed neuron projection genes,
using interactomes from the BioGRID database (Oughtred et al, 2021)
(Fig. 4D; Table EV5). The network highlighted AKT1 and PIK3RI of
the oncogenic PI3K/AKT signaling pathway involved in GBM (Li et al,
2016), and the tumor suppressor patched homolog 1 (PTCH]I) (Stone
et al, 1996). PTCHI was upregulated in both GJB2 and SCN9A
knockdowns, while AKT1 and PIK3RI were deregulated in SCN9A
knockdown (Fig. 4E). Thus, proliferation pathways appear to be
deregulated by knockdown of our candidate genes.

Interestingly, we also uncovered genes and pathways regulating
tunneling nanotubes (TNTs). TNTs are filipodia-like extensions
between cells that enable cell-to-cell communication and promote
tumor invasion, proliferation, and therapy resistance in GBM
(Gimple et al, 2022; Rustom et al, 2004; Valdebenito et al, 2021;
Wang et al, 2011). Our pathway and network analyses highlighted
two Rac family small GTPases (RACI, RAC3) that were down-
regulated in GJB2 knockdown cells, as well as the signaling adaptor
CDC42SE2 involved in TNT formation (Bid et al, 2013) (Fig. 4E).
Furthermore, the PI3K/AKT signaling pathway differentially
expressed in GJB2 knockdown GBM cells is implicated in TNT
(Wang et al, 2011). Collectively, transcriptome-wide signatures of
GJB2 and SCNYA indicate their roles in proliferative and neuron
projection pathways in GBM. In particular, the TNT pathways
deregulated in GJB2 knockdown cells represent an intriguing
avenue for further characterisation.

GJB2 promotes tunneling nanotube formation, regulates
filopodia dynamics, and increases GBM invasion

To define the role of GJB2 in TNTs, we investigated the cellular
phenotypes of GJB2 knockdown using three patient-derived
mesenchymal GBM cell lines: G411, G729, and G797. First, we
determined the impact of GJ/B2 knockdown on Rho GTPase
pathway genes. GJB2 knockdown significantly decreased the
expression of RAC Rho GTPase genes RACI, RAC2, and RACS,
confirming our findings from transcriptomic and pathway analyses
(Fig. 5A). Similarly, the TNT-associated signaling adaptor gene
CDC42SE2 was downregulated in GJB2 knockdown cells, while
tumor suppressor PTCHI was significantly upregulated. Further-
more, GJB2 knockdown reduced RAC1 protein expression (Fig. 5B).
Next, we monitored TNT dynamics in our patient-derived GBM
cell lines (Fig. 5C). While GBM cells formed robust TNT networks
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that connected different cells, we found a striking reduction in TNT
lengths in all GBM cell lines upon GJB2 knockdown (FC>1.13,
P <0.05). These results were reproduced in GBM cells negative for
an apoptosis marker (cleaved caspase-3), demonstrating that the
shortened TNTs in GJB2 knockdown cells were not caused by
morphological changes from apoptosis (Appendix Fig. S6a). Since
TNTs can be formed from physical interaction of two filopodia in
double filopodia bridges (Chang et al, 2022) and RAC1 is a critical
regulator of filopodia formation (Hall, 1998; Mehidi et al, 2019), we
investigated the role of GJB2 on the dynamics of cell filopodia.
Time-lapse imaging of membrane GFP (mGFP)-expressing
G411 cells revealed that G/B2 knockdown reduced the maximum
extension length and lifetime of filopodia, while the extension rate
and total number of filopodia remained unchanged (Fig. 5D). As
the morphological changes from apoptosis take place within 2h
in vitro (Evan et al, 1992; Saraste and Pulkki, 2000), time-lapse
imaging was performed over 2.5h to ensure that the altered
filopodia dynamics were not due to apoptosis. Among cells that did
not exhibit apoptotic rounding or blebbing over the imaging
duration, G/B2 knockdown reduced the maximum extension length
and lifetime of filopodia (Appendix Fig. S6b). Taken together, these
results demonstrate that GJB2 regulates filopodia dynamics and
TNT formation in GBM cells.

To characterize the role of GJB2 in GBM in vivo, time-matched
tumors were collected from mGFP G411 xenografts treated with
shRNA targeting GJB2 or non-targeting controls. Immunofluores-
cence of RACI and phosphorylated myosin light chain 2 (pMLC2),
a downstream effector of Rho GTPases, revealed that GJB2
knockdown significantly diminished RAC1 and pMLC2 levels in
tumors (Fig. 5E). These results corroborate our computational and
in vitro findings that GJB2 is a critical regulator of RAC signaling.
Since TNTs and filopodia facilitate tumor invasion (Jacquemet et al,
2015; Pinto et al, 2020), we examined the boundaries in GJB2
knockdown and control tumors to analyze invasiveness. The size of
invading tumor colonies as well as sinuosity, a measure of tumor
infiltration, were significantly reduced in tumors with GJB2
knockdown (Fig. 5F). We then examined filopodia, marked by
mGFP, at the invasive front. GJ/B2 knockdown tumors exhibited
shortened filopodia length compared to control tumors (Fig. 5G).
These results demonstrate that GJB2 promotes tumor invasion and
regulates filopodia of GBM cells in vivo.

GJB2 and SCN9A promote GBM growth in vitro
and in vivo

Finally, we studied GJ/B2 and SCN9A in the regulation of in vitro
growth and in vivo tumorigenic potential of GBM cells. We studied the
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three patient-derived mesenchymal GBM cell lines G411, G729,
G797 with high native expression of GJB2 and SCN9A (Lan et al, 2017;
Meyer et al, 2015; Park et al, 2017). Protein expression was validated by
GJB2 and SCN9A immunostaining, which revealed that these were
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primarily expressed in the cell soma (Appendix Fig. S7a,b). First, we
found that GJB2 or SCN9A knockdown drastically reduced GBM cell
viability (Fig. 6A). Second, we evaluated overall proliferative capacity
using two approaches: by determining their sphere forming frequency
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Figure 4. Transcriptomic profiling of GBM cells with GJB2 or SCN9A knockdown (KD) indicates their roles in proliferative and neuron projection pathways.

(A) Differentially expressed genes in patient-derived GBM cells (G729, n = 3) with GJB2 or SCN9A knockdown (EdgeR, FC >1.25, FDR < 0.05). (B) Pathway enrichment
analysis of genes associated with GJB2 or SCN9A expression (ActivePathways, FWER < 0.05). Differentially expressed genes from knockdown experiments in GBM cells
were jointly analyzed with genes differentially expressed in TCGA GBMs. The enrichment map shows enriched pathways as nodes that are connected by edges into
subnetworks if the pathways share many genes. Network themes are labeled, and each pathway is colored by the transcriptomics dataset in which it was identified. (C)
Subnetwork of neuron projection pathways from panel (B). Asterisks indicate statistical significance (*<0.05, **<0.01, ***<0.001, ****<10-'). (D) Protein-protein
interactions (PPIs) of genes in tunneling nanotube pathways. Nodes are differentially expressed genes in GJB2 or SCN9A knockdowns in GBM cells from panel (A) and
edges represent high-confidence PPIs from the BioGRID database. (E) Differential expression of selected genes involved in tunneling nanotube pathways, mitosis, and
signal transduction. Normalized expression values (counts per million (CPM)) for GJB2 or SCN9A knockdown and non-targeting (NT) controls are shown (n=3). FDR
values from EdgeR are shown as asterisks. Source data are available online for this figure.

using limiting dilution assay (LDA) (Brix et al, 2021; Hu and Smyth,
2009; Ploemacher et al, 1989), and by examining mitotic index using
immunostaining of the mitotic marker phospho-histone H3 (pHis3).
GJB2 or SCN9A knockdown effectively abolished sphere formation
(Fig. 6B,C) and significantly reduced the percentage of cells under-
going mitosis (Fig. 6D). Third, we investigated the roles of GJB2 and
SCN9A in regulating GBM growth in vivo (Fig. 6EJF). We
orthotopically injected luciferase-expressing G411 cells into immuno-
deficient NOD-SCID gamma mice. We monitored the survival of
GBM-bearing mice and examined tumor growth using non-invasive
bioluminescence imaging. GJB2 or SCN9A knockdown markedly
reduced tumor growth. Mice bearing GBMs with either GJ/B2 or
SCN9A knockdown displayed significantly prolonged survival
(P <0.05, Wald test). Examination of GJB2 and SCN9A by immuno-
fluorescence in endpoint tumors revealed comparable expression in
GJB2 or SCN9A knockdown tumors and control tumors (Fig. EV5),
suggesting that the mice in the knockdown groups succumbed to
shRNA-escaper tumors. Collectively, these results demonstrate that
GJB2 and SCN9A promote GBM growth in vitro and in vivo, are
consistent with the findings that GBM-relevant genes and pathways
are altered by their deficiency (Fig. 4) and establish GJB2 and SCN9A
as functional regulators of GBM aggression.

Discussion

Ion channels and other IP genes comprise a large class of drug
targets. More than 15% of FDA-approved drugs target ion channels
to treat a variety of human diseases, such as diabetes, hypertension,
and neurological disorders (Hayashi et al, 2007; Skerratt and West,
2015; Triggle, 2006). However, the expression patterns and
functional roles of IP genes are understudied in cancer. In this
study, we found that IP genes encoding ion channels, ion
transporters, and gap junctions are highly upregulated in subsets
of cancer samples at frequencies and magnitudes that significantly
exceed most protein-coding genes. This is apparent in most major
cancer types, thereby revealing a fundamental characteristic of
cancer. On average, each cancer sample shows elevated expression
of dozens of IP genes at levels significantly exceeding their
physiological range. Our machine learning analyses provide a
catalogue of IP genes that correlate with patient survival in cancer
and have versatile roles in bioelectrical signaling. This is a useful
resource for identifying biomarkers, validating therapeutic targets,
and repurposing approved drugs that act on the ion permeome.
GJB2 and SCN9A are implicated in monogenic diseases with
emerging implications in cancer. SCN9A functions in signal
transduction in neurons including nociceptor pain signaling
(Estacion et al, 2009). GJ/B2 encodes a gap-junction protein
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(connexin) whose autosomal recessive allele causes deafness in
Asian populations (Barashkov et al, 2011). High GJB2 expression is
associated with worse prognosis in GBM and LGG, suggesting
common mechanisms in high- and low-grade gliomas. G/B2 and
SCNYA have been linked to invasion and proliferation in prostate
(Chen et al, 2019), lung (Campbell et al, 2013), gastric (Xia et al,
2016), and breast cancer (Liu et al, 2019), as well as metastasis
(Ezumi et al, 2008; Naoi et al, 2007) and worse prognosis in several
cancer types (Inose et al, 2009; Liu et al, 2019; Meng et al, 2022;
Zhu et al, 2017). In GBM, however, the phenotypic and prognostic
aspects of G/B2 and SCN9A have not been characterized to date.
We selected GJB2 and SCNYA as high-priority target genes in GBM
due to their associations with patient survival identified in our
machine learning analyses. G/B2 or SCN9A knockdown led to
profound transcriptional dysregulation that disrupted proliferative
and neuron projection pathways in patient-derived GBM cell lines.
Notably, G/B2 knockdown affected tunneling nanotube pathways
that control intercellular communications within GBM. The
lengths of TNTs and filipodia were disrupted by GJB2 depletion
in GBM cells, possibly via reduced RAC1 expression. We
demonstrated that reduced expression of either G/B2 or SCN9A
strongly impaired GBM cell viability in vitro and in vivo. Further,
both genes show intratumoral variation in GBM and are
predominantly expressed in malignant cell types. Collectively,
these data establish our top-listed genes as functional regulators of
GBM aggression.

GBM networks are comprised of multicellular connections
between tumor cells and neurons, astrocytes, and other cells of the
tumor microenvironment that are indispensable for proliferation,
invasion, metabolic rewiring, and therapy resistance (Osswald et al,
2015; Pinto et al, 2020; Venkataramani et al, 2022; Venkatesh et al,
2019; Zhang et al, 1999). Different connections have been
characterized: tumor microtubes (TMTs) are over 500 um in
length, last for days, and consist of gap junction connections,
whereas TNTs are shorter than 100 um, last for hours, and are
mostly open-ended with few connections (Venkataramani et al,
2022). GJB2 knockdown GBM cells showed reduced expression of
RAC small GTPases (RAC1-3) and the CDC42 effector CDC42SE2
that are involved in TNTs (Hanna et al, 2017; Zhang et al, 2020a),
while no expression changes were found for previously identified
TMT-regulating genes (Jung et al, 2017; Osswald et al, 2015),
suggesting that GJB2 function may be specific to TNTs. Gap
junction proteins, such as connexin 43 (GJAI), mediate inter-
cellular electrical signaling through TNTs (Wang and Gerdes, 2012;
Wang et al, 2010b). Electrical coupling of GBM cells through gap
junctions is required for tumor growth (Venkatesh et al, 2019).
Determining the precise subcellular localisation of GJB2 and its role
in electrical conductance is needed to establish GJB2 as a direct
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Figure 5. GJB2 regulates TNT formation, filopodia dy ics, and i of GBM.

(A) TNT genes were dysregulated in GJB2 knockdown cell lines. Comparison of mRNA expression of TNT pathway genes in GJB2 knockdown GBM cells and non-targeting
(NT) control cells measured using RT-gPCR (n = 3). Relative gene expression values were normalized to control genes. P-values were computed using Welch's t-tests and
are shown as asterisks (*<0.05, **<0.01, ***<0.001, ****<107%). (B) Protein quantitation of RAC1 in GJB2 knockdown cells. Western blot of RAC1 and the internal control
GAPDH in three patient-derived cell lines targeted with two different GJB2 shRNAs or NT controls. Relative expression of RAC1 in GJB2 knockdown cells compared to NT
controls from the western blots for three independent replicates (right). Horizontal lines display the mean relative protein expression in each group that was normalized in
each cell line. P-values computed using Welch's t-tests are shown. (C) TNT projection lengths are reduced in GJB2 knockdown cells (G411). TNT lengths (left) quantified
from confocal microscopy images (right) of GJB2 knockdown GBM cells labeled with mGFP and DAPI. Arrowheads indicate TNTs. (D) Timelapse images of mGFP tagged
GBM cells. Filopodia extension length and filipodia lifetime in GJB2 knockdown cells and NT control cells were measured for each cell at 30 s intervals over 180 intervals.
(E) RAC1 and pMLC2 levels are reduced in GJB2 knockdown tumors. Immunofluorescence imaging was performed in time-matched tumors collected 12 days post

implantation. For xenograft experiments (E-G), results were derived from three mice for NT control and four mice for each GJB2 shRNA. (F) GJB2 knockdown reduces
tumor invasiveness. Boundary sinuosity and infiltrating tumor colony size were measured in confocal microscopy images of mGFP-expressing tumors. (G) GJB2 knockdown
tumors have reduced filopodia length. Data information: For cell experiments (A-D), all results represent at least three independent technical replicates. Two biological
replicates (G729, G797) were used for (A) and three biological replicates (G411, G729, G797) for (B, C). For mouse xenograft experiments (E-G), results were derived
from three biological replicates for controls and four biological replicates in each of the knockdown groups. Arrowheads in (C) indicate tunneling nanotubes and in (G)
filopodia, which were visualized by tumor mGFP signal. P-values from Mann-Whitney U-tests are shown in (C-G). Box plots span the interquartile range (IQR; 25th-75th
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percentiles) where median values are shown as lines and whiskers reflect values within 1.5x% of IQR. Source data are available online for this figure.

regulator of TNTs. We found that RAC Rho GTPases and actin
regulators were downregulated in GBM cells upon GJB2 knock-
down. RACI is a major regulator of actin dynamics (Chang et al,
2022; Hall, 1998), and TNTs form from actin-rich membrane
protrusions (Bid et al, 2013; Gimple et al, 2022; Pinto et al, 2020).
Thus, our results suggest that GJB2 may also affect TNTs indirectly
through RAC1 and other actin regulators. This is consistent with
previous observations in HeLa cells, where GJB2 overexpression
increased RACI activation (Polusani et al, 2016). Further studies
are required to determine how GJB2 regulates RACI.

In summary, we show that prominent activation of IP genes is
associated with tumor heterogeneity and patient outcomes across
the spectrum of human cancers. We present a catalogue of IP genes
for future studies and establish two IP genes with oncogenic roles in
GBM. The global IP gene alterations indicate that ionic flux-
mediated bioelectrical signaling via aberrant ion permeome activity
is a potential pan-cancer hallmark.

Methods

TCGA transcriptomics data and patient
clinical information

Bulk tumor RNA-seq data and patient clinical information of the
TCGA PanCanAtlas project (Cancer Genome Atlas Research et al,
2013; Data ref: The Cancer Genome Atlas, 2013) were collected from
the Genomic Data Commons data portal. RNA-seq data in FPKM-UQ
(fragments per kilobase million, upper quartile) were used unless
specified otherwise. In cases with multiple tumor samples per patient,
we selected the sample with the first barcode. Control samples and
tumor samples lacking survival or RNA-seq data were removed. We
analyzed cancer types with at least 50 samples, with 9352 samples of 29
cancer types in total, including 150 GBMs. Breast cancer (BRCA)
subtypes were analyzed separately (luminal A, luminal B, HER2
positive, basal-like, normal-like), using annotations from the R
package TCGABiolinks (Colaprico et al, 2016; Data ref: TCGAbiolinks
resource for TCGA data, 2016), resulting in distinct 33 cancer types. In
gliomas (LGG), IDHI/2 mutation status from TCGABiolinks was
included as a covariate. All GBM samples from TCGA we analyzed
were IDHI1/2 wildtype or unclassified. Additional analyses were
conducted on subtypes of GBMs. Sample annotations of subtypes were
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obtained from a previous study (Data ref: Wang et al, 2017; Wang et al,
2017) and the GBM samples were annotated to GBM subtypes based
on TCGA sample barcodes. Nine GBM samples with missing subtype
information were excluded. Data analysis was performed in Python
(3.9.11) using custom scripts. Unless stated otherwise, statistical tests
were performed using the stats package from the Scipy software library.
The ggplot2 R package was used for visualisations (R 4.1.3, ggplot
3.4.0).

lon permeome genes

Drug targetable ion permeome (IP) genes were retrieved from the
Guide to Pharmacology (GtP) database (downloaded June 6, 2022)
(Data ref: The IUPHAR/BPS guide to PHARMACOLOGY, 2022;
Harding et al, 2022). IP genes included the classifications of
voltage-gated ion channels (ICs), ligand-gated ICs, and other ICs.
As controls, we studied two drug target families: kinases and
G-protein coupled receptors (GPCRs). GPCRs were obtained from
GtP. Kinases were retrieved from the UniProt database (pKin-
Fam.txt, downloaded Sept. 15, 2022) (Data ref: UniProt: the
universal protein knowledgebase, 2021; UniProt, 2021) and
intersected with the list of enzymes in GtP. Genes lacking RNA-
seq data in TCGA were excluded. In total, 276 IP genes, 391
GPCRs, and 505 kinases were included.

Clustering cancer samples by IP gene expression

An unsupervised analysis of cancer samples using IP gene
expression as features was performed using standardized, loglp-
transformed FPKM-UQ expression values. The Uniform Manifold
Approximation and Projection (UMAP) python package (McInnes
et al, 2020) with default parameters was used for dimensionality
reduction. Cancer samples were visualized in the first two UMAP
dimensions and colored by cancer type.

Highly elevated expression of IP genes

We identified IP genes with highly elevated expression using
Tukey’s outlier analysis (Tukey, 1977). Each cancer type and IP
gene was analyzed separately. A cancer sample was considered to
have highly elevated (outlier) expression of a given IP gene if its
expression exceeded the 75th percentile of its expression across all
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samples of the given cancer type by 1.5-fold the interquartile range
(25-75%). Otherwise, the sample was classified as having an
expected expression range. We computed expression fold-change
(FC) values, comparing the cancer samples having highly elevated
and expected expression of IP genes, as the ratio of median
expression values of the two groups. Switch-like IP genes were
annotated separately. Switch-like IP genes were defined as genes
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that had zero expression in most samples (i.e., median zero) while
fewer than half of the cancer samples had non-zero expression.

Statistical analysis of elevated expression of IP genes

To evaluate the significance of elevated IP expression in cancer, we
performed control analyses using (i) all protein-coding genes, and
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Figure 6. GJB2 or SCN9A knockdown impairs GBM cell growth in vitro and in vivo.

Alexander T Bahcheli et al

(A) GJB2 or SCN9A knockdown reduces GBM cell viability in vitro. Cell viability was evaluated using an MTS assay in patient-derived GBM cell lines (G729, G797, G411).
Horizontal bars show mean cell viability in each group, normalized to the mean of the controls (NT shRNA). For cell line experiments (A, B, D), all results represent at least
three technical replicates and three biological replicates (G411, G729, G797). FDR-adjusted P-values from Welch independent t-tests are shown (*<0.05, **<0.01,
***<0,001, ****<107). (B, C) GJB2 or SCN9A knockdown reduces sphere formation of GBM cells. Brightfield imaging and limiting dilution assay (LDA) were performed on
GJB2 or SCN9A knockdown GBM cells and NT control cells. Sphere forming frequency was measured at the 14-day timepoint. Points show mean sphere formation
frequency for each group of six technical replicates and the vertical lines show the full range of measurements calculated using the ELDA software. FDR-adjusted P-values
from Welch-independent t-tests are shown (all FDR < 0.001). (D) GJB2 or SCN9A knockdown reduces the mitotic activity of GBM cells in vitro. Mitotic activity was
determined by immunostaining of mitosis marker phospho-histone H3 (Ser10). The percentage of phospho-histone H3-positive cells was quantified four days after
lentiviral shRNA transduction. FDR-adjusted P-values from Mann-Whitney U-tests are shown. Box plots span the interquartile range (IQR; 25th-75th percentiles) where
median values are shown as lines and whiskers reflect values within 1.5x of IQR. (E) GJB2 or SCN9A knockdown impairs tumor growth in GBM xenografts in mice.
Bioluminescence imaging was performed on mice following implantation of knockdown or NT control G411 GFP-luciferase cells. Radiance was measured 10 min after
injection with 100 mg/kg luciferin on the IVIS Spectrum system. (F) GJB2 or SCN9A knockdown improves mouse survival in GBM xenografts. Mice with gene knockdown
xenografts or NT control G411 xenografts as controls were monitored for survival for 50 days. Survival analysis was performed independently for each shRNA and
visualized with Kaplan-Meier plots. Biological replicates are indicated (n). Wald P-values and CoxPH HR values are shown. Source data are available online for this figure.

major classes of drug targets including (ii) GPCR genes, and (iii)
kinase genes, as. The control gene sets were down-sampled with
replacement to match the count of IP genes (276) over 10,000
iterations. Each cancer type was analyzed separately. Fractions of
outlier cancer samples and median FC values from these iterations
were used as reference to evaluate the cohort frequency and
magnitude (fold-change) of IP gene upregulation in cancer. Cohort
frequency and FC were visualized as 2D density plots for individual
cancer types and the pan-cancer cohort. For control gene sets,
representative iterations corresponding to median fold-change
values were shown. P-values reflect the empirical probability of
median outlier rates and median outlier FCs of the control gene sets
exceeding the IP outlier rates and outlier FC.

Identifying survival-associated IP genes

To find IP genes significantly associated with patient survival, we
used a machine learning framework based on Cox proportional
hazards (CoxPH) elastic net models and bootstrap analysis adapted
from our previous work (Isaev et al, 2021). Loglp-transformed
expression profiles of 276 IP genes were used as model features.
Cancer types were analyzed separately, with a model response of
either overall survival (OS) or progression-free survival (PES), as
recommended previously (Liu et al, 2018) (Table EV1). In each
cancer type, IP genes with detectable expression were included
(mean FPKM-UQ > 1 across all samples). IP genes were prioritized
over 1000 iterations of elastic net survival regression models fit on
random subsets of 80% of samples. At each iteration, feature pre-
selection selected a subset of IP genes that associated with survival
in univariate CoxPH regression (Wald test; P<0.1). These were
fitted using the Python package CoxPHFitter from the lifelines
library. A multivariate CoxPH model was then fitted with pre-
selected genes as features and patient survival as a response.
Clinical variables were also included as features to evaluate the
complementarity of IP genes. These included patient age and sex,
tumor grade and stage; and IDHI/2 mutations for LGG (Cohen
et al, 2013). We selected the best-performing penalty (a) using a
grid-search with 5-fold cross validations using the GridSearchCV
package from sklearn. Following elastic net regularisation, model
features (i.e., IP genes and clinical variables) with non-zero
coefficients were recorded. After all iterations, we selected the final
IP candidate genes and clinical variables that were identified as
features in the regularized CoxPH models (>50% iterations). To
derive hazard ratios (HR) and 95% confidence intervals for the
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selected IPs, univariate CoxPH models using all samples were used.
Elastic net training, regularisation, and parameter evaluation were
conducted using the CoxnetSurvivalAnalysis package from the
sksurv library, with a fixed Ll-ratio hyperparameter (A=0.5).
Finally, to confirm that our approach was calibrated, we repeated
the IP prioritisation workflow using 1000 simulated datasets
generated by randomly shuffling patient survival outcomes while
maintaining true IP gene expression profiles. We compared the
results of these simulated datasets to the true datasets. As expected,
simulated data revealed significantly fewer and lower-confidence IP
genes compared to true datasets (Appendix Fig. S2).

Additional survival analyses of IP genes in GBM

In GBM, we focused on the five prioritized IP genes that were
further vetted using extended multivariate CoxPH models with
patient age, sex, and IDHI/2 mutations as features. Based on HRs
and Wald P-values, we selected four IP genes (GJB2, SCNYA,
KCNN4, AQP9) and excluded GJD3 due to sub-significant survival
association and HR in multivariate models. To evaluate survival
associations, GBM samples were split into two groups using
median-dichotomisation and outlier-based (Tukey) dichotomisa-
tion of IP expression. Survival associations were evaluated using
CoxPH regression separately for the discovery data (TCGA) and
two external validation datasets (see below). Survival associations of
GJB2 and SCN9A were the strongest in the middle age group of
TCGA GBMs (55-66 years), potentially explained by the age
variable that was the strongest clinical feature identified in our
analysis. Kaplan-Meier plots were generated to visualize the
survival differences between groups.

External validation of survival associations

We used additional GBM transcriptomics datasets to validate the
survival associations of GJB2 and SCN9A. First, we studied 136
primary GBMs profiled in the Glioma Longitudinal Analysis
(GLASS) Consortium (Data ref: The Glass Consortium, 2018; Glass
Consortium, 2018), after excluding recurrent GBMs, duplicate
samples per patient, and samples used in TCGA. All GLASS
samples were IDHI1/2 wildtype. GLASS RNA-seq data were
available as transcripts per million (TPM) units. Second, we used
the microarray dataset (Data ref: Freije et al, 2004; Freije et al, 2004)
(GEO accession: GSE4412) with 55 grade-IV gliomas for which
IDH1/2 mutation status was unavailable. Relative fluorescent units
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(RFI) of gene expression were exponentially transformed to
approximate normal distributions. In case of multiple cancer
samples per patient, the alphabetically first sample was selected. We
also performed survival analyses with covariates as described above.
No significant associations with patient age were found, potentially
due to smaller sample sizes or cohort composition.

Candidate gene expression correlations with clinical,
immune, and micro-environment features

To explore the potential roles of GJ/B2 and SCN9A in GBM, we
asked how their expression associated with molecular and
pathological features of GBMs, including longitudinal expression
profiles from the GLASS project (Glass Consortium, 2018) and
anatomical expression data of the Ivy Glioblastoma Atlas (Data ref:
Ivy Glioblastoma Atlas Project, 2018; Puchalski et al, 2018). The
GBM subtypes based on DNA methylation and gene expression
patterns were acquired from TCGA (Brennan et al, 2013; Data ref:
Brennan et al, 2013). Immune cell infiltration and immune-based
cancer subtypes of TCGA samples were obtained from Thorsson
et al (Data ref: Thorsson et al, 2018; Thorsson et al, 2018).
Molecular features of TCGA tumors, including recurrent somatic
mutations, copy number alterations, and clinical subtypes were
obtained from TCGABiolinks (Colaprico et al, 2016; Data ref:
TCGADbiolinks resource for TCGA data, 2016). To associate
features with the candidate genes, gene expression in samples with
and without features were compared using two-tailed
Mann-Whitney U-tests. For tumor subtypes and other multi-
class features, we compared samples of a given subtype with
samples of all other subtypes combined. Immune cell infiltration
(ICI) profiles from CIBERSORT were first median dichotomized
into two equal subsets of GBMs (high vs. low ICI). IP gene
expression was compared between the resulting groups. Multiple
testing correction was applied within each analysis and significant
findings were reported (FDR < 0.05).

Association of somatic genomic alterations and DNA
methylation with patient survival

To study whether GJB2 and SCN9A in GBM were also associated
with somatic genomic or epigenomic alterations at GJB2 and
SCN9A, we analyzed gene promoter DNA methylation, genomic
copy number alterations (CNAs), and somatic nucleotide variants
(SNVs) with GBM patient survival information. For promoter
methylation analyses, patients were median-dichotomized into high
and low groups based on promoter methylation of GJB2 or SCN9A.
For CNAs and SNVs, patients were grouped based on the presence
or absence of a copy number gain, loss, or non-silent SNV. Survival
associations were evaluated using CoxPH regression with high
promoter methylation status or mutation status provided as a
binary feature in a univariate model. Kaplan-Meier curves were
generated to visualize the survival differences between groups.
DNA methylation, copy number data, and SNVs from TCGA
(Cancer Genome Atlas Research et al, 2013; Data ref: The Cancer
Genome Atlas, 2013) was downloaded using the TCGAbiolinks R
package (May 9th, 2023) (Colaprico et al, 2016; Data ref:
TCGADbiolinks resource for TCGA data, 2016). We obtained
methylation data for 54 GBM samples, copy number data for 146
GBM samples, and SNV data for 150 GBM samples, thereby
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limiting our survival analysis to GBM samples with matching
expression, genomic, and DNA methylation data. Methylation data
was available from the Illumina 450k platform as beta values
measuring CpG site methylation. We limited the analysis to CpGs
in the relevant gene promoters using CpG annotations available in
the Human EpicV2 dataset (Data ref: Human EpicV2 dataset,
2017), which associates CpG probes with genes and functional
genomic regions. For each gene, we calculated the mean beta value
across the CpG probes in its promoter. The mean value was used as
a proxy of promoter methylation and GJB2 and SCN9A gene
promoter methylation means were calculated. Copy number
analysis included relative CNAs for each gene and copy number
intensities for genomic segments. Relative copy number data for
each gene was used to define CNAs: relative copy numbers of zero
were considered balanced; relative CNAs above zero were
considered gains, and relative CNAs below zero were considered
losses. We investigated the correlations between GJ/B2 and SCN9A
and known GBM cancer-associated genes from the COSMIC
Cancer Gene Census database (Data ref: COSMIC: the Catalogue
Of Somatic Mutations In Cancer, 2019; Tate et al, 2019). We
expanded the CNA analysis to include all GBM samples with CNA
data available from TCGA. SCN9A CNAs for individual GBM
samples were visualized by associating gene-level CNAs with the
chromosomal segments of the same sample. Protein-coding SNV
GJB2 and SCN9A were retrieved from the TCGA mutant allele
frequency (MAF) file for GBM samples.

Expression of GJB2 and SCN9A in tumors and normal
brain tissues

To compare GJB2 and SCN9A expression in tumors and normal
tissues, we analyzed GBMs from TCGA and normal brain tissues
from the Genotype-Tissue Expression (GTEx) dataset (version
phs000424.v9, downloaded Oct. 5, 2022) (Data ref: The Genotype-
Tissue Expression (GTEx) project, 2013; GTEx Consortium, 2013).
Expression data (TPM) for 3326 samples from 399 patients were
obtained from the GTEx data portal. For improved comparison,
RNA-seq data in TCGA and GTEx were then rank-normalized
across all protein-coding genes. Expression ranks of GJB2 and
SCN9A were compared between 13 types of GTEx brain tissues and
two subsets of GBMs (i.e., GBMs with highly elevated outlier IP
gene expression, and GBMs with expected expression). The mean
expression ranks were shown with +/— one standard deviation
(s.d.) for each tissue type. Ranks of tissue types were compared
using two-tailed Mann-Whitney U-tests and multiple testing
correction (FDR) was applied.

Expression of GJB2 and SCN9A in GBM in single-cell
RNA-seq datasets

We studied GJB2 and SCN9A expression in single-cell RNA-seq
data of GBM samples from two studies: Neftel et al (2019) (Data
ref: Neftel et al, 2019; Neftel et al, 2019) (7930 cells, IDH1/2
wildtype GBMs) and Johnson et al (2021) (Data ref: Johnson et al,
2021; Johnson et al, 2021) (55,284 cells, IDHI/2 wildtype, and
mutant GBMs). Previously processed transcriptomics data and cell
and phenotype type annotations were retrieved from the original
studies. The UMAP method was applied to loglp-transformed
TPM values. Cells were colored by expression of GJB2 or SCN9A
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(log10 TPM). The reference cell map used the cell-type annotations
from the original studies.

Patient-derived GBM samples and cell culture

GBM cells for functional experiments were obtained following
informed consent from patients. Experiments were in accordance
with the Research Ethics Board (REB approval #0020010404) at
The Hospital for Sick Children (Toronto, Canada). Access to
pathological data was obtained from the institutional review
boards. Patient-derived GBM cell lines (G797 male, G729 female,
G411 male), which were established from mesenchymal GBMs,
were cultured using previously established protocols (Pollard et al,
2009) including serum-free NS cell self-renewal media (NS media)
consisting of Neurocult NS-A Basal media, supplemented with 2
mmol/L L-glutamine, hormone mix (in house equivalent to N2),
B27 supplements, 75 mg/mL BSA, 2mg/mL Heparin, 10 ng/mL
basic FGF and 10 ng/mL human EGF. GBM cell lines were grown
adherently on culture plates coated with poly-L-ornithine and
laminin and maintained in 37 °C tissue culture incubator with 5%
CO,. All cell lines were regularly checked for mycoplasma
infections by DAPI staining.

Knockdown of GJB2 and SCN9A in GBM cells

Knockdown experiments in GBM cell lines (G411, G729, G797)
were performed using lentivirus-mediated shRNAs. Knockdowns
were repeated for three replicates per cell line and knockdown
efficacy of GJB2 and SCN9A was validated using RT-qPCR. Human
pLKO.1 lentiviral shRNA target against GJ/B2 or SCN9A and
pLKO.1-TRC-control vector were obtained from Dharmacon. Viral
transduction was performed in antibiotics-free culture medium for
24 h. The following shRNA mature antisense sequences were used:
GJB2 #1: GTCTTCACAGTGTTCATGATT; #2: GAACGTGTGC-
TACGATCACTA. SCN9A #1: GCCCTCATTGAACAACGCATT;
#2: GCTGATTTGATTGAAACGTAT.

RNA-seq profiling of GJB2 and SCN9A knockdowns

RNA-seq data was generated in the patient-derived GBM cell line
G729 with shRNA targeting GJ/B2, SCN9A, or non-targeting (NT)
shRNA controls, as described above. Total RNA was collected
4 days post lentiviral ShRNA transduction using RNeasy Plus Mini
Kit (Qiagen #74134). Lentiviral transduction and RNA extraction
were performed in triplicates. RNA integrity number (RIN) was
determined using Agilent Bioanalyzer. All samples had RIN > 9.8.
Library preparation was performed using NEBNext Ultra II
Directional polyA mRNA Library Prep Kit. Sequencing was
performed on Illumina NovaSeq 6000 with 30 million paired end
reads per sample at 100 bp read length.

Processing and data analysis of RNA-seq data of
knockdown cell lines

We aligned RNA-seq reads to the reference human genome HG19
(GRCh37.p13) from the GENCODE, for better consistency with the
TCGA dataset. Reads were mapped to the transcriptome using
Rsubread (Liao et al, 2019) with default settings. Differential gene
expression analysis of GJB2 and SCN9A knockdown cells was
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conducted on raw read counts. Three replicates treated with IC-
targeting shRNAs for each IP gene were compared to three control
replicates treated with NT shRNAs, using the EdgeR package in R
(Robinson et al, 2010). First, lowly expressed genes were removed
(mean count < 1). Second, we selected significantly differentially
expressed genes with an absolute fold change of at least 1.25 (abs
log2 fold change flc > 0.32) using the glmTreat method of EdgeR. P-
values from EdgeR were corrected for multiple testing and
significant genes were selected (FDR<0.05). Individual gene
expression values were visualized using counts per million (CPM).

Transcriptomics analysis of TCGA data for
GJB2 and SCN9A

To integrate the transcriptomics data from our knockdown
experiments with patient tumor data, we detected the genes
associating with GJB2 and SCN9A expression in the GBMs in
TCGA. Raw RNA-seq counts were obtained from TCGABiolinks
(Colaprico et al, 2016; Data ref: TCGAbiolinks resource for TCGA
data, 2016) and lowly expressed genes were filtered (mean count <
1). TCGA GBM samples were split into two groups based on the
median gene expression separately for GJB2 and SCN9A. Differ-
ential gene expression analysis was used to compare the groups
using glmTreat from the EdgeR package (Robinson et al, 2010) and
significant genes were selected (absolute FC > 1.25, FDR < 0.05).

Integrative pathway enrichment analysis

We performed an integrative pathway enrichment analysis to
identify pathways and processes jointly associated with GJ/B2 and
SCN9A expression in our cell line knockdown experiments and
GBMs in TCGA. We used the ActivePathways method (Paczkowska
et al, 2020) with a matrix of P-values representing differential
expression estimates of all protein-coding genes in the four
comparisons (i.e., G/B2 and SCN9A; both in cell lines and TCGA).
Gene sets of biological processes from Gene Ontology and
molecular pathways from Reactome were downloaded from the
gProfiler web server (January 13, 2023) (Data ref: The g:Profiler
web server, 2021; Reimand et al, 2007). Gene sets with 50-500
genes were used. All protein-coding genes measured in RNA-seq
datasets were used as the background set. Genes with low
expression (mean count < 1) were deprioritized prior to the
analysis by setting their P-values to 1.0. The resulting pathways
were corrected for multiple testing and significant results were
selected using default settings (Holm family-wise error rate
(FWER) < 0.05). The enrichment map of pathways and processes
was created using the EnrichmentMap app in Cytoscape standard
protocols (Shannon et al, 2003) (Reimand et al, 2019). The major
functional themes were organized manually.

Protein-protein interactions of neuron
projection pathways

We constructed a PPI network of the differentially expressed genes
in GJ/B2 and SCNY9A knockdown experiments that were annotated
in neuron projection pathways. First, we selected a subset of GO
processes related to neuron projection from our pathway enrich-
ment analysis (Table EV4). Of those pathways, we selected the
genes that were differentially expressed in at least one knockdown
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experiment. All human PPIs were downloaded from the BioGRID
database (Data ref: The BioGRID database, 2021; Oughtred et al,
2021) (version 4.4.217, July 22, 2022) and filtered to include only
high-confidence PPIs found in at least two studies (PubMed IDs).
Self-interaction PPIs were excluded. The PPI network was then
limited to the neuron projection genes defined above and visualized
using Cytoscape (Shannon et al, 2003). Proteins in the network
were prioritized by node degree (node size) and differential
expression in knockdown experiments (node color; merged FDR
values using Brown’s method). We highlighted known cancer genes
of the COSMIC Cancer Census database (Data ref: COSMIC: the
Catalogue Of Somatic Mutations In Cancer, 2019; Tate et al, 2019).

Mouse xenograft experiments

We performed orthotopic mice xenografts of patient-derived GBM
cell lines using female NOD SCID gamma /J#5557 immunodefi-
cient mice aged eight weeks. Mice were housed under aseptic
conditions with filtered air and sterilized food, water, bedding, and
cages. Animal procedures followed the Animals for Research Act of
Ontario and the Guidelines of the Canadian Council on Animal
Care, as approved by the Centre for Phenogenomics (TCP) Animal
Care Committee (protocol 23-0288H). GBM cells (G411) were
transduced with lentiviral vector pBMN (CMV-copGFP-Luc2-
Puro, Addgene plasmid #80389, a gift from Magnus Essand)
expressing GFP and firefly luciferase under the control of
cytomegalovirus (CMV) promoter, or mGFP (FUmGW, Addgene
plasmid #22479, a gift from Connie Cepko) expressing membrane-
bound palmitoylated EGFP driven by UbC promoter. GFP+ cells
were sorted by fluorescence-activated cell sorting (FACS). G411
GFP-Luc2 or mGFP cells were transduced with NT, GJB2, or
SCNYA lentiviral shRNAs for 24 hours. Two days post transduc-
tion, cells were injected into mice. Mice were assigned NT or
shRNA group at random. Mice were anesthetized using gaseous
isoflurane and immobilized in a stereotaxic head frame. The skull of
the mouse was exposed, and a small opening was made using sterile
dental drill (Precision Guide) at 1 mm lateral and 2 mm posterior to
bregma. At this location, cells were injected with a Hamilton
syringe 2.5 mm deep at a rate of 1 uL/min using a programmable
syringe pump (Harvard Apparatus). 2000 cells were injected for
endpoint, and 10,000 cells were injected for time-matched
experiments. For survival and bioluminescence imaging, GJB2
knockdown and SCN9A knockdown xenografts were performed in
separate batches. For G/B2 knockdown, 10 mice were used for each
of NT, shRNA #1, and shRNA #2 groups. For SCN9A knockdown,
12 mice were used for NT, 14 mice for shRNA #1, and 15 mice for
shRNA #2. Kaplan-Meier curves were generated to compare the
survival of mice in the groups. For time-matched tumor analysis, 4
mice were used for each of NT, GJB2 shRNA #1, and shRNA #2
groups. Mice were euthanized 12 days post implantation. Brains
were harvested and tumor engraftment was verified by fluorescence
stereomicroscopy. Only the samples with engrafted tumors were
used for analysis, which were 3 for NT and 4 for each of the shRNA
groups. All procedures were carried out under sterile conditions.

In vivo bioluminescence imaging

In vivo bioluminescence imaging was performed using the Xenogen
IVIS Lumina System coupled with LivingImage software for data
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acquisition. Mice were anesthetized using gaseous isoflurane and
imaged 10min after intraperitoneal injection of 100 mg/kg
luciferin.

Cell viability, limiting dilution assay, tunneling nanotube,
and filopodia imaging

Cell viability was determined using CellTiter 96 AQueous One
Solution Cell Proliferation Assay (Promega), utilizing MTS reagent,
which produces a colored formazan dye when metabolized by
NAD(P)H-dependent dehydrogenase enzymes (Cory et al, 1991).
GBM cells were plated at 1000 cells per well in poly-L-ornithine
and laminin-coated 96 well plates and transduced with a 50-fold
dilution series of lentiviral shRNA for 24h. Seven days post
transduction, CellTiter 96 AQueous One Solution Cell Proliferation
Assay was performed according to manufacturer protocol.
Formazan dye absorbance was read using a microplate reader
(Molecular Devices). Differences in cell viability were tested using a
two-tailed independent-sample ¢-tests. Limiting dilution assay was
performed by plating GBM cells in a serial dilution ranging from
2000 to 3 cells per well on round-bottom 96-well plates in six
technical replicates. The numbers of wells with spheres were
quantified fourteen days after plating and data were analyzed by
Extreme Limiting Dilution Analysis (ELDA) software (Hu and
Smyth, 2009), which calculates the frequency of sphere forming
cells and the differences between groups using Chi-square tests.
GBM cells were transduced with lentiviral mGFP (FUmGW,
Addgene #22479). GFP+ cells were sorted by FACS. mGFP-
expressing GBM cells were transduced with lentiviral shRNA
(MOI > 1). For imaging of tunneling nanotubes at 4 days post
transduction, cells were fixed with 4% paraformaldehyde at room
temperature for 20 min, then stained with DAPI. Images were
acquired on Quorum Spinning Disk confocal microscope with 63x/
1.4NA objective. For live imaging at 4 days post transduction, cells
were imaged every 30 s for 90 min or 150 min. Tunneling nanotube
length was quantified using PerkinElmer Volocity software (version
6.3.1). Filopodia length was quantified using Image] software
(version 1.54d). Image file names were blinded for the analysis.
Significant differences in nanotube measurements were tested for
using two-tailed Mann-Whitney U-tests.

Immunofluorescence staining

For cells, lentiviral shRNA-transduced mGFP GBM cells were
cultured on poly-L-ornithine and laminin-coated coverslips. 4 days
post transduction, cells were fixed with 4% paraformaldehyde at
room temperature for 20 minutes, then permeabilized with 0.1%
Triton X-100 (Bio Basic #TB0198) in PBS (Bio Basic #PD8117).
Cells were blocked with blocking solution (0.1% Triton X-100, 10%
goat serum (MilliporeSigma #G9023) in PBS) for 1h, then
incubated with primary antibody at 4 °C overnight and secondary
antibody for 1.5h at room temperature in the dark. Stained
coverslips were mounted onto slides (VWR #48311-703) using
Aqua-Mount (Lerner #13800). For tissues, tumor-bearing mice
were intracardially perfused with PBS and ice-cold 4% parafor-
maldehyde. Harvested brains were cryoprotected in 30% sucrose
and flash frozen in O.C.T. compound (Scigen #SGN4585), then
cryosectioned at 12 um thickness. Tissue sections were permeabi-
lized with 0.1% Tween-20 (Bio Basic #TB0560) in PBS, then
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incubated in blocking solution for 2h at room temperature.
Sections were then incubated in primary antibody at 4 °C overnight
and secondary antibody for 2h at room temperature. Stained
sections were mounted with coverglass and Aqua-Mount. Primary
antibodies were diluted in blocking solution, and secondary
antibodies were diluted in blocking solution with 1 pug/mL DAPIL
Primary antibodies used were rabbit anti-phospho-histone H3
(Abcam #AB5176, 1:1000), chicken anti-GFP (Aves Labs #GFP-
1020, 1:200), mouse anti-RAC1 (BD Biosciences #BD610650,
1:100), rabbit anti-phospho-myosin light chain 2 (Cell Signaling
#3671, 1:100), rabbit anti-cleaved caspase-3 (Cell Signaling #9661,
1:500), rabbit anti-Nav1.7 (Alomone Labs #ASC-008, 1:100), mouse
anti-Cx26 (ThermoFisher #13-8100, 1:100), and mouse anti-
STEM121 (Takara #Y40410, 1:100). Secondary antibodies used
were Alexa Fluor 488 donkey anti-chicken IgG (#703-545-155),
Rhodamine Red-X donkey anti-mouse IgG (#715-295-151), Alexa
Fluor 647 donkey anti-mouse IgG (#715-606-151), Alexa Fluor 594
donkey anti-rabbit IgG (# 711-585-152), and Alexa Fluor 647
donkey anti-rabbit IgG (#711-605-152) from Jackson ImmunoR-
esearch. All secondary antibodies were diluted 1:400 for cells and
1:200 for tissues.

Acquisition and quantification of
immunofluorescence images

All immunofluorescence images were acquired on the Quorum
Spinning Disk confocal microscope. All quantification was
performed on the Volocity software (version 6.3.1). For phospho-
histone H3 positive percentage, randomly picked regions were
imaged on the 10x/0.4NA objective. pHis3-positive nuclei were
counted using the point counting tool. For tumor RAC1 and
PMLC2 intensity quantification, randomly picked regions were
imaged on the 10x/0.4NA objective. Tumor-specific RAC1 and
PMLC2 signals were measured by using the object tool to create
regions of interest around the tumor GFP signal, then quantifying
RACI and pMLC2 intensity within these regions. For GJB2 and
SCN9A imaging in cells, images were acquired with the 63x/1.4NA
objective. mGFP signal was used to create regions of interest and
measure GJB2 and SCN9A intensity within cells or filopodia. For
tissues, images were acquired with the 20x/0.8NA objective. Tumor
regions were specified by STEM121 signal or DAPI density. GJB2
and SCN9A intensities were measured in tumor regions. For
quantification of invasiveness, whole brain stitches were created by
imaging with the 10x/0.4NA objective. Infiltrating regions and
tumor boundaries were imaged on the 20x/0.8NA objective. The
63x/1.4NA objective was used to image in vivo filopodia. Sinuosity
was measured as boundary length divided by distance. Infiltrating
tumor colony size and filopodia length were measured manually.
Sample IDs were blinded for quantification.

RNA extraction, reverse transcription, and RT-qPCR

Total RNA was collected 4 days post lentiviral ShRNA transduction
using GENEzol TriRNA Pure Kit (Geneaid #GZX200). RNA
concentration was measured using NanoDrop 1000 Spectrophot-
ometer, and 1 pg of RNA was reverse transcribed to cDNA using
SensiFAST cDNA Synthesis Kit (Bioline #65054). qPCR reactions
were set up using PowerUp SYBR Green Master Mix (Applied
Biosystems #A25742) and real-time detection and quantification of
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cDNAs was performed on the Viia7 Cycler (Applied Biosystems)
with 40 cycles of amplification. Viia7 System Software (Applied
Biosystems) was used to determine Ct values with automatically set
thresholds. Gene expression was normalized to GAPDH and
analyzed using the AACt method. The following RT-qPCR primers
were used (h, human): hGAPDH, 5'-CTC CTG CAC CAC CAA
CTG CT-3' (forward), 5'-GGG CCA TCC ACA GTC TTC TG-3’
(reverse); hRACI1, 5-CGGTGAATCTGGGCTTATGGGA-3' (for-
ward),  5-GGAGGTTATATCCTTACCGTACG-3’  (reverse);
hRAC2, 5-CAGCCAATGTGATGGTGGACAG-3' (forward), 5'-
GGAGAAGCAGATGAGGAAGACG-3’ (reverse); hRAC3, 5'-
ACAAGGACACCATTGAGCGGCT-3' (forward), 5'-CCTCGTCA
AACACTGTCTTCAGG-3' (reverse); hCDC42SE2, 5'-GGATCAG
GAGACCTGTTCAGTG-3’ (forward), 5-CCTTCGTATCCACGA
GCTGCAT-3" (reverse); hPTCHI1, 5-GCTGCACTACTTCAGA
GACTGG-3' (forward), 5-CACCAGGAGTTTGTAGGCAAGG-3’
(reverse).

Protein extraction and western blots

We quantified the protein levels of RACI in GJB2 knockdown
GBM cells. Total protein was extracted from multiple cell
cultures (G411, G729, G797) using the RAC1 Activation Assay
Biochem Kit per manufacturer’s instructions (Cytoskeleton Inc,
#BK035-S) five days post transduction with lentiviral non-
targeting or GJ/B2 shRNA. All protein lysates were homogenised
for 20 min at 4 °C, then centrifuged at 4 °C and 14,000 rpm for
10 min. 10 mg of protein samples were resolved on a 10% Bis-Tris
gel (Invitrogen, #N'W00102BOX) at 200 V in MES running buffer
(Invitrogen, #B0002). The proteins were transferred onto a PVDF
membrane (Millipore, #1IPVH0001) and blocked with 5% BSA in
0.1% Tween-20 in TBS. Membranes were incubated overnight at
4°C in primary antibodies diluted in the blocking solution.
Immunoreactive bands were visualized using HRP-conjugated
secondary antibodies (Cell Signaling Technology), followed by
chemiluminescence with ECL-plus Western Blotting Detection
System (Amersham, #RPN2232). Chemiluminescence was imaged
and analyzed using Molecular Imager VersaDoc MP4000 system
(Bio-Rad). The primary antibodies used were mouse anti-Racl
(1:500, Cytoskeleton Inc, #ARC03) and rabbit anti-GAPDH
(1:3000, Cell Signaling #2118S). Experiments were performed in
three biological replicates. Significant differences in protein
expression were analyzed using two-tailed independent-sample
t-tests.

Statistical analyses of patient-derived cell lines and mice

No statistical methods were used to predetermine sample sizes in
validation experiments. Statistical analyses were completed after the
experiments without interim data analysis. No data points were
excluded. All data were collected and processed randomly. Each
experiment was successfully reproduced at least three times and the
experiments were performed on different days.

Data availability

RNA-seq data generated in this study are available from the
ArrayExpress database with the accession number E-MTAB-12859.
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Figure EV1. Classification of ion permeome (IP) genes used in our study.

Genes encoding IP proteins with known specific inhibitors were obtained from the Guide to Pharmacology database and filtered to include genes with expression profiles in
TCGA. The network shows a hierarchical classification of IP proteins by type or family (nodes) with arrows indicating subclasses derived from larger classes. Node size
reflects the number of genes within each type or family. Node color reflects major IP gene classes. Other ion channels (IC), voltage-gated ICs (VGIC), and ligand-gated ICs
(LGICs) represent the major classes shown. Source data are available online for this figure.
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Figure EV2. GBM subtype analysis of IP gene expression and patient survival.

(A) High upregulation of IP genes in classical, mesenchymal, and proneural subtypes of GBM. Density plots show the joint distribution of gene expression increase (fold-
change (FC), log2) and the fraction of affected cancer samples. IP genes (left) are compared to three controls (middle to right): (i) all protein-coding genes, and two
classes of drug targets: (ii) kinases and (iii) GPCRs, with down-sampling performed similarly to the main analysis. Dashed green lines show median values. Representative
iterations with median fold-change are shown. (B) Kaplan-Meier plots of overall survival (OS) in mesenchymal (left), classical (middle), and proneural (right) GBMs
grouped by GJB2 or SCN9A expression in TCGA. Bar plots show gene expression levels in risk groups. Risk groups were determined by median dichotomisation for GJB2
and SCN9A expression levels. Wald P-values, Univariate HR values, and sample counts are shown. Patient age was included as a covariate in TCGA analyses. (C) GBM
subtype associations with patient age. Stacked bar plots show the fraction of samples from GBM subtypes (left) or associated ages of patients (right) in each age group or
GBM subtype. Mann-Whitney U-test P-values are shown. (D) Kaplan-Meier plots of OS in all TCGA GBM patients grouped by patient age. Patient groups were determined
as three equally-sized groups based on low, medium, or high age. Wald P-values, Univariate HR values, and sample counts are shown. Source data are available online for
this figure
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Figure EV3. Overview of the machine learning pipeline for identifying
survival-associated IP genes.

IP gene expression was evaluated for significant survival associations
individually for 33 cancer types from TCGA. IP gene expression values were log-
normalized and used as features in a machine learning framework. Regularized
CoxPH models were trained on iterations of 80% of samples within each cancer
type, using IP gene expression values and clinical variables (patient age and sex,
tumor stage, grade, and IDH1/2 mutation status) as model features and patient
survival as the response variables. Within each iteration, features were first pre-
selected using univariate CoxPH models trained, and only genes significantly
associated with patient survival (P < 0.1, Wald test) were selected for the
multivariate model. After 1,000 iterations of feature prioritisation, IP genes
associated with patient survival in at least 50% of models were selected as
high-confidence hits. Source data are available online for this figure
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Figure EV4. Genetic alterations and DNA methylation of GJB2 and SCN9A have few associations with gene expression.

(A) Kaplan-Meier plots of OS in GBM patients (left to right): GJB2 and SCN9A promoter DNA methylation; relative somatic copy number alterations (CNAs), and somatic
single nucleotide variants (SNVs) in GBMs in TCGA. Bar plots show mean gene promoter methylation (left, beta-values) or gene expression in risk groups. Risk groups
were determined by median dichotomisation for promoter methylation and presence or absence of a CNAs or SNVs. Wald P-values, Univariate HR values, and sample
counts are shown. (B) IP gene expression associations with promoter methylation. Boxplots show gene GJB2 and SCN9A gene expression in samples with high and low
gene promoter methylation. Methylation groups were defined by median dichotomisation of mean methylation beta values of each promoter. Box plots span the
interquartile range (IQR; 25"-75% percentiles) where median values are shown as lines and whiskers reflect values within 1.5x of IQR. (C) Non-silent SNVs in SCN9A in
TCGA GBMs. Patients from panel (a) with missense SNVs in SCN9A are shown with the reference and alternate amino acids. (D) CNAs in SCN9A in GBM associate
with CNAs in the adjacent IDHI. CNAs for GBM TCGA samples are included with labels showing the genomic loci of SCN9A and IDHI. Source data are available online
for this figure
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Figure EV5. Endpoint GBM tumors in the knockdown groups are shRNA escapers.

GJB2
NT shRNA shRNA-1
DAPI

GJB2
shRNA-2

SCN9A
NT. shRNA shRNA-1
DAPI STEM121 SCN9A

SCNYA
shRNA-2

Tumors with knockdown of GJB2 or SCN9A at endpoint have comparable expression of GJB2 or SCN9A. Brains from or IP gene knockdown xenograft mice or NT control
xenograft mice were harvested at humane endpoint from tumor outgrowth. Immunofluorescence imaging of GJB2 or SCN9A were performed on GJB2 or SCN9A
knockdown tumors, respectively. For GJB2 quantification, DAPI density was used to identify tumor regions because the GJB2 and STEM121 antibodies were both from
mouse. For SCN9A quantification, tumor regions were identified by co-staining with human-specific antibody STEM121. Results are from n = 4 mice for NT control group,
n = 3 mice for each GJB2 knockdown group, and n = 4 mice for each SCN9A knockdown group. All groups were not significantly different according to Welch's T-tests. Box
plots span the interquartile range (IQR; 25%-75% percentiles) where median values are shown as lines and whiskers reflect values within 1.5x of IQR. Source data are

available online for this figure
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