
iological

sychiatry:
NNI
Archival Report

B
P
C

Disrupted Visual Cortex Neurophysiology
Following Very Preterm Birth

Benjamin A.E. Hunt, Shannon E. Scratch, Sarah I. Mossad, Zahra Emami, Margot J. Taylor, and
Benjamin T. Dunkley
ISS
ABSTRACT
BACKGROUND: Visual regions develop rapidly in utero and throughout early childhood, but very preterm (VPT) birth
can disrupt the typical maturation of primary cortices, with VPT children exhibiting mild visual impairments in early life
and throughout development. This is thought to be due to dysfunctional maturation of occipital cortices. A way to
readily index brain function is to examine neural oscillations; these mechanisms play a central role in the modeling and
pruning of connections, providing an intrinsic temporal structure that refines the precise alignment of spiking, pro-
cessing information in the brain, and coordinating networks.
METHODS: Using magnetoencephalography, we examined regional oscillatory patterns and functional coupling in
VPT and full-term children. Five minutes of eyes-open resting-state data were acquired from 27 VPT and 32 full-term
children at 8 years of age.
RESULTS: As hypothesized, the VPT group, when compared with control children, had elevated theta-band power,
while alpha amplitude envelope coupling, a marker of connectivity, was found to be decreased.
CONCLUSIONS: These results support the hypothesis of spectral slowing in VPT children and more broadly suggest
that the developmental arc of visual neurophysiology is disrupted by VPT birth. We conclude that these deficits
underlie difficulties in complex visual perceptual processing evident during childhood and beyond.

Keywords: Children, Functional connectivity, Magnetoencephalography (MEG), Neurodevelopment, Neuronal oscil-
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Out of every hundred births, at least one baby is born 2 to 4
months too early, or very preterm (VPT: 24–32/40 weeks
gestational age [GA]) (1). Owing to huge advances in neonatal
intensive care, these infants now have an excellent survival
rate (2), yet most VPT children still experience difficulties at
school age (3–5). These problems include academic under-
achievement (6,7), social and cognitive dysfunction (8–11), and
a greatly increased risk of psychiatric disturbances (12). If it
were possible, from an early age, to identify which children will
develop such difficulties and which children will follow a typical
maturational trajectory, it would be possible to allocate inter-
ventional resources precisely to those children who stand to
benefit most. The first step toward this goal is to identify the
neural markers associated with preterm birth that provide
robust measures of VPT children’s cognitive development and
how it may differ from their full-term (FT) peers.

The challenge is that children born VPT often exhibit se-
lective problems with perceptual and cognitive development
(13–15) that often occur even in the absence of individual (i.e.,
single-subject) structural brain abnormalities (16,17). Subtle
difficulties in areas such as visual perception can manifest and
interfere with typical functioning (18–24), although the biolog-
ical bases of these issues remain poorly understood. A pro-
posed explanation for the visuoperceptual impairments found
Crown Copyright ª 2019 Published by Elsevier In
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in children born VPT is that preterm birth alters the typical
maturational trajectories of visual cortex development (25), and
group-level studies using magnetic resonance imaging (MRI)
have revealed structural changes associated with problems in
perceptual function (16,26,27), including alterations to white
matter, indicative of atypical structural connectome develop-
ment among regions in this population (27).

Preterm birth has also been associated with altered func-
tional circuitry in the brain, as indexed by functional MRI (fMRI)
blood oxygen level–dependent interregional correlations (28).
Known as functional connectivity (29,30), these measures are
abnormal during the neonatal period (31) and remain abnormal
into adolescence, suggesting maladaptive reorganization of
functional brain circuits during early developmental periods.
We know that intrinsic network physiology matures rapidly
through the early life span (32); however, relatively little is
known about developmental neurophysiology in preterm birth.
Because neural oscillations have been shown to be a key
mechanism of brain function, neurophysiological exploration of
VPT birth is warranted.

Neural oscillations are cyclic regular fluctuations in neuronal
excitability that allow groups (or ensembles) of neurons to
process and coordinate information in the brain, playing a
central role in cognition, perception, and behavior (33–37).
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They are readily imaged noninvasively in humans using elec-
trophysiological techniques such as electroencephalography
and magnetoencephalography (MEG). While these techniques
capture information about the same underlying neural
processes—that is, summated primary currents from the mass
action of synchronous neural firing—they differ in the physical
properties of the signals they record and in their spatial and
frequency resolution (38).

Neural oscillations coordinate local and large-scale
communication in the brain, from microcircuits within individ-
ual regions to brain-wide networks. Neural rhythms can be
characterized in a number of ways, and each property of a
wave tells us something different about the nature of these
circuits; measurements include frequency, defined by cycles
per second (or Hertz), the amplitude of a wave, and the phase
angle. All three properties of neural waves are known to be
complementary in terms of their functional significance and
can be modulated independently of one another for use as a
multiplexing mechanism (39).

Both spontaneous neural oscillations and their task-
dependent dynamics develop dramatically throughout in-
fancy [including the developmental window corresponding to
very premature birth (40)], childhood, and adolescence (34,41)
and well into middle age (42). These developmental dynamics
reflect the maturational trajectories of functional brain circuits
(34,42). Neural oscillations exhibit a distinct characteristic peak
in the alpha band (8–14 Hz) that dominates in the occipital
lobe, and this is driven by strong and reciprocal thalamocort-
ical connections (43). As the brain matures, it exhibits simul-
taneous and progressive decreases and increases in the peak
frequency and amplitude of neural oscillations (34,42), and
these are reliable markers of neurodevelopment in infants and
school-age children (44). A number of studies have found dif-
ferences in regional spectral power at rest in children born
VPT, particularly decreases associated with aspects of visual
function, dominant in slower frequency bands (45,46).

It has been previously demonstrated that low-frequency
alpha oscillations (w8–13 Hz) in school-age children born
VPT are slowed and/or decreased in power (45), with a
concomitant increase in power in the theta band (4–7 Hz).
Persistent dysfunctional brain activity, indexed by oscillations,
may explain some of the lifelong perceptual and cognitive
difficulties this group faces, given that adults born VPT also
express altered low-frequency oscillations (47). Building on
this, dysfunction in the dynamic coordination of information
has also been identified in VPT children during working
memory tasks, and these alterations were associated with
visuospatial outcome measures (45).

While local spectral power is linked to regional functional
specialization, the statistical interdependencies of fluctuations
between brain regions captures the degree to which brain
areas are communicating with one another. Dysfunctional
patterns in neurophysiological coupling within and across
networks is thought to underlie the primary symptoms in a
number of conditions that include psychiatric symptoms such
as multiple sclerosis (48), autism spectrum disorder (49), and
posttraumatic stress disorder (50). MEG has revealed
dysfunctional cortical responses in preterm children (51) and
altered neural synchrony in preterm-born children and ado-
lescents (45,52,53). However, amplitude envelope connectivity
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(AEC), a measure that correlates highly with blood oxygen
level–dependent fMRI functional connectivity, has not been
used in cohorts born VPT, to the authors’ knowledge. AEC is a
mechanism that can operate independently of interregional
neural phase synchrony and is known to correlate highly with
the underlying structural pathways in the brain (39,54,55). This
function–structure relationship may elucidate structural ab-
normalities that are beyond the resolution of in vivo structural
imaging methods by assessing interregional communication
directly. Moreover, AEC has been found to exhibit the greatest
test–retest reliability of all electrophysiological functional con-
nectivity methods at both the group and individual levels
(56,57).

In the current study, we investigated the proposed slowing
of alpha oscillations or increased magnitude of low-frequency
theta oscillations through examination of the regional power
spectral density in the theta and alpha frequency ranges in VPT
children. We recorded eyes-open resting-state MEG activity
from a group of school-age children born VPT and a cohort of
age-matched FT control children. We hypothesized that chil-
dren born VPT would exhibit increases in theta power and/or
reductions in alpha power, consistent with spectral slowing.
Furthermore, we extend existing literature with our analysis of
AEC—a reliable and robust measure of circuitry in the brain—
and hypothesized that children born VPT would exhibit
reduced amplitude envelope coupling in the occipital lobes,
where the spectral shift in power is most prominent. Together,
these indices of neurophysiological function would indicate
disrupted neural circuits that control visual perception brought
about by preterm birth.

METHODS AND MATERIALS

Participants

A total of 62 8-year-old children were recruited for this study.
Three children born VPT were excluded for motion artifacts in
the scanner. The final sample consisted of 27 children born
VPT and 32 FT children (see Table 1 for sample demographics;
see Supplemental Table S1 for further characterization of the
VPT cohort). Children who were born VPT were recruited
through the Hospital for Sick Children neonatal intensive care
unit (Toronto, Ontario, Canada) at birth and then were followed
longitudinally every 2 years. The current data were obtained at
their 8-year follow-up. All children provided verbal assent and
parents gave written informed consent. This study was
approved by the research ethics board at the Hospital for Sick
Children. FT children were recruited through advertisements
placed in the community, in local schools, and at the hospital.
Exclusion criteria included a history of neurodevelopmental
disorders, an IQ # 70, and any language issues (e.g., non-
English speakers) preventing successful completion of tasks
as well as standard MEG/MRI exclusions such as metallic
dental work.

Neuropsychological Assessments

All participants completed the vocabulary and matrix
reasoning subtests of the Wechsler Abbreviated Scale of In-
telligence as an estimate of their full-scale IQ (58) and the
Beery Test of Visual–Motor Integration (59). Parents completed
019; -:-–- www.sobp.org/BPCNNI
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Table 1. Demographics of Children Born VPT and FT

VPT (n = 27) FT (n = 32) Test Statistic

Age, Years 8.63 6 0.55 8.53 6 0.44 t57 = 0.87, p = .39

Sex, Male:Female 17:10 14:18 c2
1 (N = 59) = 2.17, p . .05

Birthweight, Grams 1220.90 6 217.10 3538.60 6 574.80 t57 = 19.60, p , .001

Gestational Age, Weeks 29.07 6 2.11 $37 (39.04 6 1.48) t57 = 20.30, p , .001

Trial Number 21.11 6 6.67 21.59 6 5.67 t57 = 0.30, p . .05

Head Movement, mm 4.99 6 2.50 5.51 6 2.28 t57 = 0.84, p = .40

WASI Matrix Score 51.78 6 10.66 59.50 6 4.20 t57 = 3.77, p , .001

Visual–Motor Integration Score 95.56 6 11.22 104.88 6 11.60 t57 = 3.12, p , .01

BRIEF Global Function Score 47.70 6 9.65 45.69 6 7.88 t57 = 0.88, p = .38

Values are mean 6 SD or n.
BRIEF, Behavior Rating Inventory of Executive Function; FT, full term; VPT, very preterm; WASI, Wechsler Abbreviated Scale of Intelligence.
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the Behavior Rating Inventory of Executive Function (BRIEF),
Global Function (60).

MEG and MRI Data Acquisition

Participants were tested in a magnetically shielded room in the
MEG laboratory at the Hospital for Sick Children using a 151-
channel MEG system (CTF Omega; CTF MEG International,
Coquitlam, British Columbia, Canada). Three fiducial coils were
placed on each participant’s nasion and left and right preaur-
icular points to measure head position continuously while in
the scanner. Five minutes of resting-state MEG data (600-Hz
sampling rate, third-order spatial gradient noise cancellation,
with continuous head position recording) were acquired in the
supine position with eyes open. Participants were instructed to
try to minimize eye movements and to maintain fixation on a
plus sign (1) within a circle, presented on a black background.
The fixation stimulus was projected into the magnetically
shielded room onto a back-projection screen positioned at a
viewing distance of 80 cm.

After the MEG recording, the fiducial coils were replaced
with MRI contrast markers for coregistration of MEG with MRI
data. A 3T structural MRI (T1-weighted, sagittal three-
dimensional magnetization prepared rapid acquisition
gradient-echo, field of view/resolution = 240 3 256, 0.8 mm
isovoxels, repetition time/echo time/inversion time = 1870/
3.14/945 ms, flip angle = 9�) was acquired in all participants on
a Siemens scanner (Magnetom PrismaFIT, Siemens AG,
Erlangen, Germany) with a 20-channel head coil. MEG data
were coregistered to the MRIs using the fiducial coils as
reference.

MEG Preprocessing

An overview of our MEG processing pipeline is presented in
Supplemental Figure S1. MEG data were bandpass filtered
offline using a high-pass filter of 1 Hz and a low-pass filter of
150 Hz with a 60-Hz notch filter and were subsequently
analyzed in FieldTrip (61). Artifacts related to cardiac activity,
eye blinks, and eye movements were removed using the in-
dependent component analysis function (fastica) in FieldTrip.
Components were visually inspected and rejected by an
experienced MEG analyst. As many epochs of 10 seconds as
possible were selected from the 5-minute recording such that
the head position during each epoch 1) deviated less than 8
mm from the recording median and 2) excluded portions of
Biological Psychiatry: Cognitive Neuroscien
data that contained SQUID (superconducting quantum inter-
ference device) resets or exceeding a threshold of 62 pT after
independent component analysis component rejection.

Subject-specific single shell head models were created
from each subject’s T1-weighted MRI. The brain was parcel-
lated using the automated anatomical labeling (AAL) atlas (62),
and individual MRIs were warped using a nonlinear trans-
formation from template Montreal Neurological Institute co-
ordinates into subject-specific MEG coordinates. The centroid
of each AAL parcel was used to define the node location for
the beamformer reconstruction. The FieldTrip implementation
of the linearly constrained minimum variance vector beam-
former (63) was used to reconstruct the neural time series at
each location defined by the AAL centroid with 5% Tikhonov
regularization. Lead fields were computed from the subject
single-shell head model for a unit current dipole in three di-
mensions at each node. The beamformer weights for the ac-
tivity at each node were computed by projecting the sensor
weights along the axis with the highest singular value
decomposition variance, resulting in a one-dimensional activity
time series for each node. The time series for each node were
then z-scored (converted to zero mean and unit standard de-
viation), and the regional power spectrum density (PSD) was
estimated using Welch’s method (pwelch function in MATLAB
[The MathWorks, Inc., Natick, MA]) on each epoch and then
averaged over epochs. The resultant values were portioned
into two low-frequency bands of interest, theta (427 Hz) and
alpha (8214 Hz), and for each the trial-mean PSD in the fre-
quency domain was derived. Regional PSD maps were plotted
using BrainNet Viewer (64).

Functional Connectivity: AEC

The broadband regional time course for each node location
was filtered into theta and alpha frequency ranges, and before
computing functional connectivity a symmetric orthogonali-
zation procedure (65) was applied to the filtered regional time
series to attenuate artificial connectivity that might be the
result of signal leakage. The Hilbert transform was applied to
the resultant time course to derive instantaneous estimates of
the amplitude envelope, which was then downsampled to 1 Hz
by averaging the amplitude over 1-second intervals (66).
Pearson correlations between all node pairs were calculated to
index functional connectivity. AEC was chosen over other
measures of synchrony (e.g., phase lag index, phase locking
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value) because it has been shown to be the most reliable
measure of connectivity across sessions and over individuals,
pointing to the greatest replicability as well as the lowest
susceptibility to coregistration-related errors (56).

Statistical Analyses

For the demographics and neuropsychological data, normality
was assessed using the Shapiro-Wilk test, and given the
directionality of our hypotheses, we used one-tailed t tests to
evaluate for group mean differences in all tests except for sex
ratios, which used a c2 test.

For the neuroimaging data, owing to the previous literature
on power differences between FT children and children born
VPT (45,52), we assessed normality using the Shapiro-Wilk test
and tested our hypotheses using one-tailed t tests to evaluate
for group differences. All tests were corrected, on a whole-
brain level, using a false discovery rate correction imple-
mented using the Benjamini-Hochberg procedure (67). Our
novel analysis of functional connectivity could not be strongly
informed from prior literature; as such, we used two-tailed
statistics and contrasted between groups by using nonpara-
metric permutation testing with 10,000 permutations and alpha
criterion set at .05. Permutation testing does not require data
to be normally distributed. Again, false discovery rate was
used to control for multiple comparisons across the whole-
brain functional connectome space (90 AAL regions).

RESULTS

Group Characteristics

There were no significant differences in age or sex between
groups or in the number of trials that passed data quality
assurance; the VPT group did, of course, have lower birth-
weight and GA (Table 1). For the neuropsychological tests, the
Wechsler Abbreviated Scale of Intelligence and Visual–Motor
Integration were found to be significantly lower in the VPT
group compared with the control group, although still within
normal limits, while the Behavior Rating Inventory of Executive
Function rating was not significantly different.

Elevated Theta Oscillations in Visual Cortex in
Children Born VPT

The resting-state group-averaged power spectrum density
plots for each lobe in the VPT and FT children are presented in
Figure 1. We observed the characteristic 1/f PSD with a defined
alpha peak at approximately 10 Hz, which was dominant in the
visual cortex (green trace). When comparing these PSD curves
between groups, we saw a reduction in children born VPT, in line
with previous reports (Figure 1, left). In terms of the regional
power distribution of band-limited theta and alpha within each
group, theta power appeared to be relatively evenly distributed
throughout the cortical seeds (middle row), while alpha power
dominated in the occipital cortex, as expected.

PSD from occipital seeds showed a trend for reduction in
peak alpha power in the bilateral lateral occipitotemporal seeds
(Figure 2A). When contrasting regional power maps using a
one-tailed t test between groups, we found elevated theta
power in the ventromedial prefrontal cortex, orbitofrontal cor-
tex, and occipital regions in VPT (pcorr , .05), which would be
4 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
consistent with a slowing of alpha frequencies (Figure 2B; re-
gions listed and further statistical details provided in
Supplemental Table S2). For alpha, there were no significant
regional differences (pcorr . .05).

Reduced Alpha Envelope Coupling in Visual Cortex
of Children Born VPT

Functional coupling via AEC was used as a measure of inte-
grative function where, given previous findings and hypothe-
ses, we tested contrasts in the theta and alpha bands. Theta
AEC trended toward greater connectivity in VPT frontal lobes
(the upper left quadrant of the connectivity matrix), and when
considered globally a greater number of increased connection
weights were seen, with some decreases that do not show any
specific spatial organization (Figure 3). For alpha AEC, the
characteristic visual network structure was evident within the
groups (red squares with black bounding boxes in the center of
the connectivity matrices in Figure 3). Contrasting VPT with FT
using a two-tailed permutation procedure similar to theta AEC,
there were a number of connections showing increased and
reduced connectivity. However, the majority of occipital seeds
were shown to have reduced AEC in the VPT group compared
with the FT group (pcorr , .05). This network is plotted on the
glass brain for interpretative ease and shows a mix of intra-
and interhemispheric connections. Assessing the average
connection strength within this network, we found there to be a
significant positive correlation with GA, whereby higher GA
was accompanied by greater connection strength within this
occipital network (Supplemental Figure S2).
DISCUSSION

VPT birth occurs during the late prenatal stage of brain devel-
opment in the third trimester (gestational weeks 24–32) when
thalamocortical brain circuits develop rapidly (68), laying the
foundation for long-range thalamocortical and corticocortical
connectivity (69). While analyses of hemodynamic recruitment
have shown neurovascular coupling dysfunction in VPT co-
horts, electrophysiological analyses that capture neuronal
processes offer a direct window into neural (dys)function.
Here, we extended previous electrophysiological studies
assessing the neurophysiological impact of VPT birth.

Our PSD analyses revealed that both VPT and FT children
exhibit the classic alpha-band peak within the occipital lobes.
However, the VPT group alpha peak was reduced, at the
lobular level, compared with FT children. Exploring this effect
on a region-by-region basis indicated a trending group differ-
ence most apparent in the inferior occipitotemporal region, a
region critical for detailed processing of complex visual stimuli,
including faces, numbers, and letters (70). Assessing power
across the cortex, we found theta-band PSD to be increased
in VPT children compared with FT children in several frontal
and occipital regions. This is consistent with the previously
observed spectral slowing following premature birth, where
oscillatory phenomena that would typically be localized to the
alpha band (w8–14 Hz) shift into the canonically defined theta
band (w4–7 Hz). This notion is also supported by our cortex-
wide assessment of alpha power, where the FT cohort
exhibited greater occipital power than children born VPT.
019; -:-–- www.sobp.org/BPCNNI
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Figure 1. Group mean power spectrum density by
lobe (top row) and regional power in the theta and
alpha range (middle and bottom rows, respectively)
for very preterm (VPT) (left column) and full-term (FT)
(right column) children. For the power spectrum
density curves, automated anatomical labeling seeds
from each lobe were averaged to make a lobe-mean
power curve for frontal (red), temporal (blue), visual
(green), parietal (light blue), and subcortical (black).
For regional oscillatory power in the theta and alpha
bands, band-limited power spectrum density was
averaged over participants and plotted on a template
mesh. L, left; R, right.
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Our observation of an occipital power difference in the VPT
group is extended by our novel functional connectivity analysis
assessing AEC at the whole-brain level (Figure 3). Here, we
found children born VPT to exhibit significantly reduced func-
tional coupling within a subset of occipital regions in the alpha
band.

The children born VPT were born during critical develop-
mental stages, on average 3 months before their FT peers. Our
study suggests that the adverse experience of preterm birth
disrupted aspects of the developmental process, such that
neural circuits with oscillatory profiles that dominate in the
theta and alpha bands were selectively affected and that
functional coupling within the visual cortex was particularly
susceptible. Low-frequency oscillations are generated by
thalamocortical loops and are of greater power in the visual
cortex. In terms of their functional significance, they reflect
local inhibitory processes through selective activation and
phasic blocking of information processing in task-irrelevant
regions (71–73). These develop during the differentiation of
the cortical layers from the cortical plate; because VPT birth
Biological Psychiatry: Cognitive Neuroscien
occurs during this important phase of brain development, it
can cause disruptions to the maturation of typical cytoarchi-
tecture and arcs of synaptogenesis (74).

Given prior studies and the role of oscillations in thalamo-
cortical coupling, we replicated the findings reporting reduced
low-frequency regional power and extended them by exam-
ining AEC, a measure of the temporal correlation between the
envelopes of neural oscillations. This measure was used
because AEC is the most similar conceptual analog of con-
nectivity computed in resting-state fMRI, and therefore our
results can be compared to and extend the fMRI literature
(75,76). Structural MRI has revealed dysmaturation in VPT
children associated with problems in perceptual function
(16,26,27), including alterations to white matter, indicating that
structural connections among brain regions do not develop
typically in this population (27). This has been attributed to
reduced myelination and delayed neuronal maturation (77,78)
as a result of oligodendrocyte progenitor cells being adversely
affected by stressful neonatal experience (79–81). Prior work
has found that cortical myelin correlates with low-frequency
ce and Neuroimaging - 2019; -:-–- www.sobp.org/BPCNNI 5
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Figure 2. (A) Further investigation of the lobular
finding (in Figure 1) by plotting bilateral regions within
the occipital lobe. The region with the greatest po-
wer, and difference in power between the groups,
was the inferior occipitotemporal area. (B) Group
contrasts of regional power for the theta band (left
column) and alpha band (right column), with test
statistics (top row; one-tailed t test) and whole-brain
corrected p values (bottom row). Contrasts revealed
significant theta increases in very preterm (VPT)
compared with full-term (FT) (control) children in the
ventromedial prefrontal cortex (vmPFC), orbito-
frontal, and occipital regions (p , .05, corrected), but
no significant effects in the alpha band. FDR, false
discovery rate; L, left; R, right.
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MEG functional connectivity using AEC, implicating cortical
myelination disruption as a probable consequence of VPT
birth (82).

Previous studies (83,84) have noted that peak alpha fre-
quency increases with age. Therefore, our observation of a
shift in frequency might not be an active process on behalf of
the children born VPT but rather a lack of cortical maturity,
meaning that a normative spectral increase does not occur or
is delayed. Future longitudinal studies are required to assess
when and where these frequency shifts occur. Regardless, our
finding of significantly attenuated AEC in the VPT cohort
highlights that this shift likely disrupts functional connectivity,
although causation cannot be ascertained. Moreover, if the
6 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging - 2
occipital lobes of the VPT group simply shift in the dominant
frequency that mediates functional coupling into the theta
band, we would have identified a significant between-group
difference in theta band. The absence of such a difference
could be interpreted as a lack of a compensatory spectral shift
in VPT children.

In terms of the functional significance of these observations,
these deficits predominate in the visual cortex; we know that
children born VPT are at greater risk of vision impairments,
including low-level perceptual deficits, such as reduced acuity
and contrast sensitivity, as well as higher-level visual
dysfunction, including global and biological motion deficits
coded by extrastriate/association cortices and visuomotor
019; -:-–- www.sobp.org/BPCNNI
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Figure 3. Alpha functional coupling was reduced in occipital cortices in very preterm (VPT) children. Functional coupling matrices are shown for low-
frequency theta (top row) and alpha (middle row) in VPT (left), full-term (FT) (middle), and VPT minus FT (right) groups. Matrix elements appearing in the
VPT2FT column showed statistically significant differences between groups, following false discovery rate correction for multiple comparisons, across the
entire connectivity space. The glass brain showed reduced alpha amplitude envelope connectivity (AEC) in the visual cortex of the VPT group, with the in-
dividual automated anatomical labeling region names shown in the adjacency matrix (bottom right). These included primary sensory as well as extrastriate/
association areas. Inf, inferior; L, left; Mid, middle; R, right; Sup; superior.
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integration deficits due to selective dorsal stream dysfunction
(25). Our behavioral results from the Visual–Motor Integration
would support these observations, where the VPT group
scored significantly lower than their FT peers in visual–motor
integration abilities. These findings can serve as an early
marker for future difficulties because visual and visual
perceptual skills are important for appropriate academic
development, including reading and math, attention, and social
cognition (85). It is well known that children born preterm
experience difficulties at school and academic underachieve-
ment that persist into adolescence (8,86,87), and these
Biological Psychiatry: Cognitive Neuroscien
academic difficulties have been linked to visual processing
challenges (88). Moreover, these academic challenges can
contribute to the frequently reported social isolation and
internalizing symptoms (including depression and anxiety) (89),
all of which children born VPT experience at a significantly
higher rate compared with their FT peers (90,91). Therefore,
this brain–behavior link should be investigated in future studies
and could provide a means to predict who would benefit from
early intervention on the bases of neurobiological markers and
assess whether behavioral interventions are assisting VPT
children in keeping up with their FT peers, both in terms of their
ce and Neuroimaging - 2019; -:-–- www.sobp.org/BPCNNI 7
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academics and in indices of their mental health. Having this
means of evaluating early visual dysfunction in VPT or other
high-risk clinical populations, and monitoring interventions,
would be an invaluable future direction of this work.

One difficulty in assessing group differences in MEG is that
of signal-to-noise ratio (SNR) discrepancies between cohorts,
especially when considering functional connectivity. This is
because greater oscillatory power can result in a greater SNR,
which may produce biased connectivity estimates. While it is
possible that SNR differences were present in this analysis, the
absence of significant group differences in alpha power but
significant differences in the envelope coupling suggests that
the alpha AEC results were not simply a product of SNR dif-
ferences between groups.

In conclusion, this is an extension of previous studies
showing altered regional oscillations and functional coupling
that predominates in visual cortices in VPT birth. In line with
these studies (45,52,53), we too see a change in spectral
profiles involving the theta band in VPT children. For the first
time, we report significant reductions in occipital lobe alpha-
band coupling in VPT children in regions critical to complex
visual processing, suggesting that disruption in early devel-
opment can have an impact on the typical maturational arcs of
the neural circuits in the visual system.
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