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Neuropathic pain andpain interferenceare linked to
alpha-band slowing and reduced beta-band
magnetoencephalography activity within the
dynamic pain connectome in patients with
multiple sclerosis
Junseok A. Kima,b, Rachael L. Bosmaa, Kasey S. Hemingtona,b, Anton Rogachova,b, Natalie R. Osbornea,b,
Joshua C. Chenga,b, Jiwon Ohc, Adrian P. Crawleyd, Ben T. Dunkleye, Karen D. Davisa,b,f,*

Abstract
Chronic pain is a common occurrence in multiple sclerosis (MS) that severely affects quality of life, but the underlying brain
mechanisms related to these symptoms are unknown. Previous electroencephalography studies have demonstrated a role of alpha-
band and beta-band power in pain processing. However, how and where these brain signals change in MS-related chronic pain is
unknown. Here, we used resting state magnetoencephalography to examine regional spectral power in the dynamic pain
connectome—including areas of the ascending nociceptive pathway, default mode network (DMN), and the salience network
(SN)—in patients with chronic MS pain and in healthy controls. Each patient was assessed for pain, neuropathic pain (NP), and pain
interference with activities of daily living. We found that patients with MS exhibited an increase of alpha-band power and a decrease
of beta-band power, most prominently in the thalamus and the posterior insula of the ascending nociceptive pathway and in the right
temporoparietal junction of the SN. In addition, patients with mixed-NP exhibited slowing of alpha peak power within the thalamus
and the posterior insula, and in the posterior cingulate cortex of the DMN. Finally, pain interference scores in patients with mixed-NP
were strongly correlated with alpha and beta peak power in the thalamus and posterior insula. These novel findings reveal brain
mechanisms of MS-related pain in the ascending nociceptive pathway, SN, and DMN, and that these spectral abnormalities reflect
the impact of pain on quality of life measures.
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1. Introduction

Multiple sclerosis (MS) is an autoimmune disease of the nervous
system, which manifests as sensorimotor, cognitive, and
psychological abnormalities.30 Chronic pain occurs in approxi-
mately 50% of patients with MS2,56 and severely affects the
patient’s quality of life, yet little is known of the underlying brain
mechanisms.70 The few studies, which have examined brain
correlates of chronic pain in MS, were limited to case studies or

only focused on the relationship between lesions, plaques, and
white-matter integrity.70 These studies failed to find any
association between structural abnormalities and chronic
pain.17,41,75,79 As such, the brain mechanisms underlying pain
in MS remain unknown.

We have proposed that pain is believed to arise from activity in
the dynamic pain connectome—a system of brain regions
involved with nociceptive processing and pain modulation,
including ascending nociceptive pathways, the salience network
(SN), the default mode network (DMN), and the descending
antinociceptive pathways.43,44 Several functional magnetic res-
onance imaging studies of chronic pain have identified abnor-
malities5,15,34,53,61,67,72 in the DMN, SN, ascending nociceptive,
and descending antinociceptive pathways.

The brain is a flexible system, which dynamically engages
various neural networks in response to the external environment.
This concept of neural dynamics is a major component of the
dynamic pain connectome concept based on functional mag-
netic resonance imaging findings, but these findings are limited by
poor temporal resolution and being based on haemodynamics,
which is an indirect measure of neural activity. Techniques such
as electroencephalography (EEG) andmagnetoencephalography
(MEG) have great utility in capturing neurophysiological data on
a millisecond scale. Previous studies using EEG have demon-
strated a link between pain perception and alpha-band/beta-
band activity and showed that peak alpha frequency was related

Sponsorships or competing interests that may be relevant to content are disclosed

at the end of this article.

a Division of Brain, Imaging, and Behaviour-Systems Neuroscience, Krembil Brain

Institute, Krembil Research Institute, Toronto Western Hospital, University Health

Network, Toronto, ON, Canada, b Institute of Medical Science, University of

Toronto, Toronto, ON, Canada, c Division of Neurology, Department of Medicine,

St. Michael’s Hospital, Toronto, ON, Canada, d Department of Medical Imaging,

University of Toronto, Toronto, ON, Canada, e Neurosciences & Mental Health

Program, The Hospital for Sick Children Research Institute, Toronto, ON, Canada,
f Department of Surgery, University of Toronto, Toronto, ON, Canada

*Corresponding author. Address: Division of Brain, Imaging, and Behaviour

-Systems Neuroscience, Krembil Brain Institute, Krembil Research Institute,

University Health Network, 399 Bathurst St, Room MP12-306, Toronto, ON M5T

2S8, Canada. Tel.: (416) 603-5662. E-mail address: karen.davis@uhnresearch.ca

(K.D. Davis).

PAIN 160 (2019) 187–197

© 2018 International Association for the Study of Pain

http://dx.doi.org/10.1097/j.pain.0000000000001391

January 2019·Volume 160·Number 1 www.painjournalonline.com 187

Copyright � 2018 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.

mailto:karen.davis@uhnresearch.ca
http://dx.doi.org/10.1097/j.pain.0000000000001391
www.painjournalonline.com


to prolonged heat pain sensitivity in healthy participants.26 In
addition, alpha-band and beta-band activity is suppressed in
response to phasic36,59 and tonic37,54,69 pain. In patients with
chronic neurogenic pain, resting state EEG indicated that low-
frequency spectral power is increased in anterior cingulate,
dorsolateral prefrontal cortex, and the insula.74 Importantly,
leftward shift of the alpha power peak frequency within the
frontocentral region has been reported in a small group of chronic
neuropathic pain (NP) patients.67 These studies demonstrated
that patients with chronic pain exhibit abnormalities in spectral
power within regions of the dynamic pain connectome. However,
it is unknown whether these abnormalities extend to MS-related
pain. Here, we use magnetic source imaging through a beam-
forming technique to spatially resolve activity usingMEG, allowing
us to localize regional spectral abnormalities in patients with MS.

In addition to the role of spectral abnormalities in MS-related
pain, it is not knownwhether there are specific brain abnormalities
associated with different types of MS-related pain, which can
include both neuropathic and non-neuropathic characteristics.
Furthermore, little is known of the brain mechanisms underlying
pain interference. Thus, the aims of the current study were to
identify the spectral power abnormalities in different aspects of
MS pain to determine (1) locations of regional abnormalities, (2)
abnormalities specific to patients with NP vs non-neuropathic
pain (NNP), and (3) the relationship between identified brain
abnormalities with interference of pain on patient’s daily activities.

2. Materials and methods

2.1. Participants

Study participants consisted of 27 patients diagnosed with MS
(17 women; 10men; mean6 SD age 396 10 years) and 26 age-
and sex-matched healthy controls (HCs) (16 women; 10 men;
mean6 SD age 356 9 years). All participants provided informed
written consent approved by the local research ethic boards of
the University Heath Network and St. Michael’s Hospital. Patients
with MS were recruited from a MS clinic at St. Michael’s Hospital.
The inclusion criteria were (1) diagnosis of MS according to the
2010 McDonald criteria, confirmed by neurologists at St.
Michael’s Hospital, (2) able to ambulate without assistance, (3)
free of any pain conditions other thanMS-related pain conditions,
and (4) no contraindications for the MRI. The inclusion criteria for
the HC group were (1) no previous history of chronic pain or
current experience of pain on a regular basis, (2) free ofmetabolic,
psychiatric, or neurologic conditions, (3) no history of major
surgery, and (4) no contraindications for the MRI.

2.2. Clinical assessment and questionnaires

Clinical information collected include year of MS symptom onset,
duration of MS, specific MS subtype, and the Expanded Disability
Status Scale (EDSS) score,46 which is a commonly used global
neurological disability score in MS. The EDSS ranges from 0 to 10
with increasing scores reflecting an increase in neurological
disability. Patients also completed the painDETECT25 for
classification into mixed-neuropathic, which contains patients
with mixed-NP and definitive NP and NNP subgroups. PainDE-
TECT scores range from 0 to 38 with scores 19 to 38 considered
to be definitively neuropathic, scores 13 to 18 considered to be
mixed-neuropathic, and scores 0 to 12 considered to be non-
neuropathic. The Brief Pain Inventory (BPI)21,58,80 was used to
measure general levels of pain and pain interference. The specific
items measured in the BPI include pain levels rated 0 to 10 (worst

pain previous day, least pain previous day, average pain, and pain
right now), pain relief from medication and pain interference
(ranges from 0 to 10, 0 5 no interference and 10 5 complete
interference) with items such as general activity, mood, walking
ability, normal work, relations with other people, sleep, and
enjoyment of life. The Hospital Anxiety and Depression Scale85

was self-administered by the participants to assess nonphysical
symptoms of anxiety and depression with scores of 8 and over
being considered clinically significant.

2.3. Magnetoencephalography acquisition

All participants underwent a 5-minute MEG session to acquire
resting state brain activity detected with a 306 channel Elekta
Neuromag TRIUX system with a sampling rate of 1000 Hz and
recording DC bandpass of 330 Hz. Participants were seated in
the upright position in amagnetically shielded room andwere free
of any metallic objects or traces of metal from makeup or hair
products. Fiducial reference points were obtained at the nasion,
right and left preauricular points for registration, and motion
correction purposes. Resting state signals were recorded during
the continuous acquisition while participants looked at a fixation
cross (“eyes-open” resting state) inside a dark room. Throughout
the resting state scan, head position was recorded using head
position coils placed on 5 positions around the participant.
Artifact correction was performed using the tSSS algorithm
implemented in the MaxFilter program.

After the MEG session, each participant underwent a 3T MRI
(GE) of the brain to acquire high-resolution T1 anatomical images
(1 3 1 3 1 mm3 voxels, matrix 5 256 3 256, 180 axial slices,
repetition time 5 7.8 seconds, echo time 5 3 ms, inversion time
5 450 ms). Magnetoencephalography data for each participant
were coregistered to their anatomical MRI scan using the fiducial
points obtained before the MEG session for source
reconstruction/inverse solution.

2.4. Magnetoencephalography data preprocessing
and beamforming

Resting state data were analyzed usingMATLAB-based program
FieldTrip (http://www.fieldtriptoolbox.org/). Resting state data
were bandpass-filtered at 1 to 150 Hz, and a notch filter was
applied at 60 and 120 Hz. Independent component analysis (ICA)
was used to remove components from the time series data that
were likely to reflect breathing and eye-blink artifacts, identified by
visual inspection. Fiducial points identified on the MRI were used
to register each individual’s high-resolution anatomical image to
the resting state MEG data. A single-shell model of the head was
used for the forward model.

Specific regions of interest (ROI) based on previously defined
coordinates34,45,64 were used to construct “virtual sensors” and
extract a continuous resting state time series for each of the
seeds/ROIs. Reconstruction of the time series corresponding to
a voxel at the center of mass of each ROI was performed using
a linearly constrained minimum variance beamformer81 based on
the anatomical location of each participant. Beamforming is
a spatial filtering technique used to obtain the signal of interest
only within the designated region of interest while optimally
suppressing the signals from other sources.71 To do this,
a weighting vector is calculated for each source location in the
brain and is applied to the physical sensor’s time course; the
resultant time series are summated and give a reconstructed
signal for the specified source location over time.81 These
magnetic source imaging methods based on atlas-guided
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beamforming to characterize regional power spectrum in health
and disease have been used for a number of years and are in
widespread use.22,23,35,51

2.5. Regions of interest

The ROIs for nodes of the dynamic pain connectome were
selected for the atlas-guided beamforming. The coordinateswere
determined based on our previous work34,45,64 on the dynamic
pain connectome and were visually confirmed on a standard
MNI152 anatomical template. The coordinates of the ROIs (x, y, z)
were ascending nociceptive pathway: left primary somatosen-
sory cortex (S1) (234, 230, 54), right S1 (34, 228, 54), left
secondary somatosensory cortex (S2) (260, 230, 20), right S2
(60,222, 18), left posterior insula (234,220, 18), right posterior
insula (34, 220, 18), left thalamus (212, 218, 8), right thalamus
(12, 218, 8); SN: right temporoparietal junction (TPJ) (50, 232,
28), right anterior insula (34, 18, 4), mid cingulate cortex (2, 12,
34), right dorsolateral prefrontal cortex (34, 46, 22); and DMN:
posterior cingulate cortex (PCC) (22, 246, 28) and medial
prefrontal cortex (22, 50, 2).

2.6. Power spectra analysis

Power spectra for each ROI seed location were calculated using
the Welch power density estimate (MATLAB 2015b) over the
resting state time series (300 seconds, no epochs or overlapping
windows). The Welch power density estimate uses a short fast
Fourier transform with a Hanning window to obtain a power value
per frequency point determined by the sampling rate (1-Hz
sampling rate). Each subject’s resting state time series was
normalized by z-scoring the beamformed time series data to
account for individual differences in broadband spectra. The
Welch power density estimate applied on the normalized data
resulted in power values per frequency point for each ROI in every
subject. For group comparisons, the mean and SD for power
were calculated at each frequency point. Peak alpha frequency
was measured by identifying individual power maxima restricted
to the alpha band (8-13 Hz) on a subject by subject basis in all of
the MS and HC subgroups and calculating the mean and SD for
each group in each ROI. We considered the following ranges to

belong to frequency bands: theta 4 to 8Hz, alpha 8 to 13Hz, beta
13 to 30 Hz, and gamma 30 to 150 Hz.

2.7. Statistical analysis

Student t tests were conducted (false discovery rate [FDR]
corrected with Benjamin Hochberg method at FDR , 0.05
across ROI) between the main groups (HC and MS) and between
patient subgroups (mixed-NP and NNP) and their respective
matched HCs to compare group averages of spectral power at
each frequency point in alpha and beta across each ROI. Effect
size for each t test was measured using Cohen’s d. For the
frequencies and ROIs at which there were group differences, we
used a Spearman correlation to assess the rank-ordered
relationship between power spectra values and pain interference
as well as power spectra values and average pain levels.

3. Results

3.1. Clinical data

Demographic data for the MS and HC groups and for the NP/
NNP subgroups are summarized in Table 1. The HC and MS
groups did not differ in age (t 5 1.5, P 5 0.15) or sex. However,
the patients with MS had significantly higher scores for de-
pression (t5 4.3, P, 0.0001) and anxiety (t5 3.8, P5 0.0004).
Between the MS subgroups (NP vs NNP) there was no significant
difference in sex or age of onset (t5 1.9, P5 0.06), although the
NP group was older than the NNP group (t 5 3.1, P 5 0.004). In
the pain-related measures, the NP group had significantly higher
average pain levels (t 5 3.5, P 5 0.002) and significantly higher
average pain interference (t 5 4.6, P , 0.0001) compared with
the NNP group. The NP group also had significantly higher EDSS
(t5 3.5, P5 0.001), depression (t5 3.2, P5 0.003), and anxiety
scores (t 5 2.3, P 5 0.02) compared with the NNP group.

3.2. Increased alpha power and decreased beta power in
multiple sclerosis

Patients with MS exhibited abnormalities in spectral power of the
alpha and beta bands within several regions of the dynamic pain
connectome (Figs. 1 and 2).

Table 1

Demographics and characteristics of HC and MS groups.

Groups MS subgroups

HC MS MS (NP) MS (NNP)

N 26 27 13 14

Age (y) 35 6 9 39 6 10 44 6 9 34 6 8*

Sex 10 M, 16 W 10 M, 17 W 5 M, 8 W 5 M, 9 W

Years since MS onset N/A 10 6 7 12 6 9 8 6 5

Average EDSS (/10) N/A 2 6 2 3 6 2 1 6 1*

Type of MS N/A 26 RR, 1 RIS 13 RR 13 RR, 1 RIS

Avg. pain (/10) N/A 3.4 6 2.7 5 6 2.5 2 6 2*

Avg. pain interference (/10) N/A 3.5 6 2.9 5.4 6 2.5 1.6 6 1.8*

HADS depression (/21) 3 6 2† 8 6 5† 11 6 5 5 6 4*

HADS anxiety (/21) 3 6 3† 7 6 5† 9 6 4 5 6 4*

All mean values are provided with SD. EDSS scores for the NP group (n 5 11, scores missing for 2 patients).

* Significant subgroup differences at P , 0.05 between the MS (NP) and MS (NNP) subgroups.

† Significant differences at P , 0.05 between the HC and MS groups.

HC, healthy control; MS, multiple sclerosis; NP, mixed neuropathic pain; NNP, non-neuropathic pain; EDSS, Expanded Disability and Severity Scale; HADS, Hospital Anxiety and Depression Scale; RR, relapsing remitting; RIS,

radiologically isolated syndrome.
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Within the alpha band, specifically at 9 to 10Hz, spectral power
was significantly increased in the MS group compared with the
HC group within the nodes of the ascending nociceptive
pathway, specifically in the left (P 5 0.0001, FDR , 0.05, d 5
1.2) and right posterior insula (P5 0.007, FDR, 0.05, d5 0.94)
(Fig. 1), the right S1 (P5 0.01, FDR, 0.05, d5 0.73) (Fig. 1), the
left (P5 0.0001, FDR, 0.05, d5 1.14) and right thalamus (P5
0.007, FDR , 0.05, d 5 0.78) (Fig. 1), as well as the left (P 5
0.004, FDR, 0.05, d5 0.92) and the right S2 (P5 0.006, FDR,
0.05, d 5 1). Furthermore, patients with MS had significantly
higher power in the right TPJ (P 5 0.006, FDR , 0.05, d 5 0.8)
(Fig. 2), a node of the SN.

Compared with HCs, beta spectral power at 13 to 14 Hz in the
MS group was significantly decreased in several nodes of the
ascending nociceptive pathway, including the left (P 5 0.002,
FDR, 0.05, d5 0.89) and right thalamus (P5 0.00007, FDR,
0.05, d5 1.2) (Fig. 1), left (P5 0.016, FDR, 0.05, d5 0.68) and

right S2 (P 5 0.025, FDR , 0.05, d 5 0.63), and the left (P 5
0.007, FDR , 0.05, d 5 0.76) and right posterior insula (P 5
0.016, FDR , 0.05, d 5 0.68). Furthermore, a significant
decrease in the beta-band power in theMS group comparedwith
the HC group was observed within the nodes of the SN (right
anterior insula [P5 0.024, FDR, 0.05, d5 0.62] (Fig. 2) and the
mid cingulate cortex [P5 0.008, FDR, 0.05, d5 0.78]) (Fig. 2).
None of the other ROIs examined showed significant group
differences.

3.3. Beta power reduction and “slowing” of alpha-band
power in patients with mixed-neuropathic pain

We next examined whether the alpha-band and beta-band
abnormalities were specific to a particular subgroup of patients
with MS who have either mixed-NP or NNP (Fig. 3). Because of
the slight age differences between the NP and NNP groups, we

Figure 1. Power spectra comparisons showingmean (6SEM) between HC (blue) andMS (red) in the ascending nociceptive pathway. Bar graphs represent mean
(6SEM) of peak alpha power and beta trough in the HC (blue) group compared with theMS (red) group. *FDR-corrected group differences at P, 0.05. FDR, false
discovery rate; HC, healthy control; MS, multiple sclerosis.
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carefully used separate groups of age-matched HCs for each
subset of patients.

We found that the beta power at 13 Hz was significantly
decreased in the NP group compared with their control group
within the regions of the ascending nociceptive pathway
including the left (P 5 0.0017, FDR , 0.05, d 5 1.38), right
thalamus (P5 0.0019, FDR, 0.05, d5 1.37) (Fig. 3A), and the
left posterior insula (P 5 0.009, FDR , 0.05, d 5 1.12).
Furthermore, alpha power at 9 to 10 Hz was prominently
increased in NNP within the regions of the ascending
nociceptive pathway left thalamus (P 5 0.014, FDR , 0.1,
d5 1.04), left posterior insula (P5 0.015, FDR, 0.1, d5 1.04),
and right posterior insula (P5 0.015, FDR, 0.1, d5 1.04) (Fig.
3A). None of the other ROIs tested exhibited a significant
difference.

Despite the findings of abnormal spectral power noted
above, there were no significant differences in spectral power
peaks between the NP and NNP pain subgroups within any
ROIs of the dynamic pain connectome. However, a trend of
“slowing” or leftward shift of the peak alpha frequency was
observed in the NP in the PCC (a region of the DMN) {mean 6
SD peak alpha frequency (Hz), 8.7 6 1.8 (MS [NP]), 9.5 6 1.4
(MS [NNP]), 10 6 1.4 (HC [NP]), 10.5 6 0.6 (HC [NNP])} (Fig.
4A), and regions of the ascending nociceptive pathway: the left
posterior insula {mean 6 SD peak alpha frequency (Hz) 9.6 6
1.1 (MS [NP]), 9.66 1.1 (MS [NNP]), 106 1.1 (HC [NP]), 10.56
0.9 (HC [NNP])} and right posterior insula {mean 6 SD peak
alpha frequency (Hz), 8.96 1.5 (MS [NP]), 9.96 1.1 (MS [NNP]),
9.6 6 1.2 (HC [NP]), 10.3 6 1.1 (HC [NNP])} (Fig. 4B), and the
left {mean6 SD peak alpha frequency (Hz), 8.66 1.9 (MS [NP]),

Figure 2. Power spectra comparisons showing mean (6SEM) between HC (blue) and MS (red) in the salience network. Bar graphs represent mean (6SEM) of
peak alpha power and beta trough in the HC (blue) group compared with the MS (red) group. Uncorrected significant group differences are marked with the *
indicating FDR-corrected group differences at P, 0.05. FDR, false discovery rate; HC, healthy controls; MCC, mid cingulate cortex; MS, multiple sclerosis; TPJ,
temporoparietal junction.

January 2019·Volume 160·Number 1 www.painjournalonline.com 191

Copyright � 2018 by the International Association for the Study of Pain. Unauthorized reproduction of this article is prohibited.

www.painjournalonline.com


9.2 6 1.1 (MS [NNP]), 9.4 6 1.6 (HC [NP]), 10.5 6 0.8 (HC
[NNP])} and right thalamus {mean 6 SD peak alpha frequency
(Hz), 8.9 6 1.5 (MS [NP]), 9.6 6 0.8 (MS [NNP]), 9.9 6 1.2 (HC
[NP]), 10.5 6 1.2 (HC [NNP])} (Fig. 4C).

3.4. Pain interference is related to alpha and beta power
within the ascending nociceptive pathway and default
mode network

We examined the relationship between pain interference and
resting state spectral power within the dynamic pain con-
nectome in all patients with MS and in each MS subgroup.
First, we extracted spectral power from the ROIs in the earlier
analyses, which exhibited a significant difference in power
between MS and HC groups. Second, we also extracted
spectral power from ROIs that demonstrated alpha peak
slowing in the MS group. The most robust finding was
a negative correlation between pain interference scores and
beta power (13 Hz) within the whole MS group in the left
posterior insula (rho 5 20.49, P 5 0.008) (Fig. 5A). This
relationship was present in patients with NP (rho 5 20.71, P 5
0.006) (Fig. 5A) but not in the NNP group (rho 5 20.23, P 5
0.43) (Fig. 5A). Pain interference scores were also positively
correlated with alpha power (9 Hz) within the whole MS group in
the left thalamus (rho5 0.39, P5 0.045) (Fig. 5B) and in the NP
group (rho5 0.53, P5 0.06) (Fig. 5B) but not in the NNP group
(rho 5 0.16, P 5 0.59) (Fig. 5B). Finally, there was a trend of
alpha power (9 Hz) being positively correlated with pain

interference within the whole MS group in the PCC (rho 5
0.35, P 5 0.07) (Fig. 5C) and significantly correlated in the NP
group (rho5 0.73,P5 0.004) (Fig. 5C) but not in the NNP group
(rho520.23, P5 0.43) (Fig. 5C). Pain interference scores were
trending towards negative correlation with beta power at 13 Hz
within the whole MS group in the left thalamus (rho 5 20.36, P
5 0.06), but there was a significant negative correlation in the
NP group (rho520.65, P5 0.02) and no significant correlation
in the NNP group (rho 5 20.09, P 5 0.77). Pain interference
scores were not correlated with beta power at 13 Hz within the
whole MS group in the right thalamus (rho 5 20.21, P 5 0.30);
however, it was significantly negatively correlated in the NP
group (rho520.66, P5 0.01) but not in the NNP group (rho5
0.16, P 5 0.59).

No other ROIs that showed power difference between HC and
MS showed significant relationships with pain interference
scores.

3.5. Average pain level is related to alpha and beta power
within the ascending nociceptive pathway and default
mode network

We also examined the relationship between average pain within
the last week and power spectra within the dynamic pain
connectome. Pain interference and average pain scores were
strongly correlated (rho 5 0.89, P , 0.01), and so, the
relationships between spectral power and average pain level
were to the correlations noted above to pain interference.

Figure 3. Power spectra comparison between MS NP and NNP subgroups against matched HC in the dynamic pain connectome. Uncorrected significant group
differences are marked with the * and corrected significant group differences are marked with ** indicating group differences at P, 0.05. (A) Group differences in
the ascending nociceptive pathway. (B) Group differences in the salience network. HC, healthy controls; MS,multiple sclerosis; NP,mixed neuropathic pain; NNP,
non-neuropathic pain.
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Specifically, in the whole MS group, average pain was
correlated with spectral power in the left posterior insula (rho 5
20.55,P5 0.003) at 13Hz, and in the left thalamus at 9Hz (rho5
0.39, P5 0.04) and at 13 Hz (rho520.46, P5 0.02). However,
average pain was not significantly correlated with spectral power
in the PCC (rho 5 0.29, P 5 13) at 9 Hz, or in the right thalamus
(rho 5 20.32, P 5 0.1) at 13 Hz. Within the NP subgroup,
average pain and spectral power were correlated in the PCC (rho
5 0.57, P5 0.04) at 9 Hz, and in the left (rho520.67, P5 0.01)
and right (rho 5 20.71, P 5 0.006) thalamus and left posterior
insula (rho 5 20.65, P 5 0.02) at 13 Hz, but not in the left
thalamus (rho 5 0.46, P 5 0.11) at 9 Hz. Within the NNP group
power, there were no statistically significant correlations between
average pain and spectral power in the PCC (rho 5 20.08, P 5
0.77) or left thalamus (rho5 0.38, P5 0.18) at 9 Hz, or in the left
thalamus (rho520.36, P5 0.21), right thalamus (rho520.11,
P5 0.71), or left posterior insula (rho520.47, P5 0.1) at 13 Hz.

4. Discussion

This study demonstrates novel findings that patients with chronic
MS pain exhibit spectral power abnormalities in the alpha and
beta bands within nodes of the ascending nociceptive pathway
and the SN. We also found that (1) these spectral power
abnormalities were particularly prominent in a subset of patients
with MS with mixed-NP, (2) the abnormalities in alpha and beta
spectral power were related to pain interference in regions of the
ascending nociceptive pathway and were most pronounced in
patients with mixed-NP, and (3) patients with mixed-NP exhibited
“slowing” of the peak alpha frequency in regions of the ascending
nociceptive pathway and in regions of the DMN.

Our finding that patients with MS mixed-NP have decreased
beta power within nodes of the ascending nociceptive pathway,
and the SN is novel as previous studies of chronic pain focused
on increases in alpha/theta power.18,47,67,74 Beta oscillations

Figure 4. Slowing of the alpha peak power in the MS (NP) group compared with the MS (NNP) and HC groups. All the regions demonstrated slowing of the alpha
peak in the NP group compared with the NNP and HC. Mean (6SD) frequency for each group is displayed on the right of the power spectra. The regions are
posterior cingulate cortex (PCC) (A), right posterior insula (B), and right thalamus (C). *Group differences betweenMS (NP) and HC (NNP) groups. The NP andNNP
for the HC group refer to the age-matched groups. HC, healthy controls; MS, multiple sclerosis; NP, mixed neuropathic pain; NNP, non-neuropathic pain.
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have previously been associated with motor functions such as
maintenance of posture82 and prevention of voluntary movement
in favour of tonic activity.1,28,60 In studies of attention and
cognition, increase in beta-band activity was associated with
maintaining current cognitive status, but beta power was
decreased in response to a change in the cognitive system
because of an external stimuli.39,57 Given the results of these
studies, one possible role of beta oscillations may be a top-down
mechanism to prevent future actions and maintain the current
status. If so, beta-band activity may be greatest if there is no top-
down adjustment needed within a neural system, and a decrease
in beta-band activity may indicate that there is top-down
involvement required to respond to an impending situation. Thus,
reduced beta power in nodes of the ascending nociceptive
pathway and SN may reflect a state of flux of these networks
because of the intermittent pain qualities associated with NP.

The observed increase in alpha power in several nodes of the
SN and ascending nociceptive pathway in MS chronic pain is in
line with previous chronic pain studies.48,74 Many studies have
described the possible role of the alpha rhythm in local inhibition,
and gating of perception19,32,55,65 as alpha activity is related to
reduced local inhibition and reduced gating. Therefore, an
increase in alpha-band power in patients with MS-related pain
may reflect a reduction of sensory gating in regions of the
ascending nociceptive pathway and/or SN. This may be why
alpha power is especially increased in patients with mixed-NP

because these patients can exhibit allodynia, hyperalgesia,
sensory loss, as well as tingling burning and shooting sensations,
which may be related to reduced gating within nodes the
ascending nociceptive pathway.29 Furthermore, increased alpha
power in the right TPJ may reflect an increased likelihood of the
SN being active in patients with mixed-NP. Thus, the increased
alpha power in the TPJ could indicate that the SN is overactive in
these patients as a result of overflowing sensory information due
to reduced sensory gating. As such, the alpha power abnormal-
ities observed within regions of the ascending nociceptive
pathway and the SN may be tightly linked. Of note, our findings
are at odds with previous MEG studies that did not find alpha
power abnormalities in MS within the ascending nociceptive
pathway and the SN.14,68,77 However, these previous studies did
not specifically investigate pain, and these patients may not have
had chronic pain.

Our finding of a “slowing” of the peak alpha frequency in
patients with MSmixed-NP is consistent with previous studies in
small groups of NP patients.16,48,67,83 Thus, alpha slowing may
be a general marker of NP. Thalamocortical dysrhythmia is the
most prominent theory proposed to explain slowing of the peak
alpha frequency in NP.49 The main tenet of this concept is that
there is a continuous overproduction of slow rhythms, which are
then propagated through thalamocortical loops. However, our
results suggest an additional or alternative explanation for this
phenomenon based on age effects. We found that patients with

Figure 5. (A) Significant negative correlation between beta power and pain interference scores in the left posterior insula but not in the MS pain subgroups. (B)
Significant positive-correlation between alpha power and pain interference scores in the left thalamus but not in the MS pain subgroups. (C) Significant positive
correlation between alpha power and pain interference scores in the PCC only in the MS NP group. MS, multiple sclerosis; PCC, posterior cingulate cortex; NP,
mixed neuropathic pain; NNP, non-neuropathic pain.
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mixed-NP and those with NNP showed “slowing” of the peak
alpha frequency compared with their age-matched controls.
Interestingly, when we investigated alpha peak frequencies of
each subgroup, we observed that younger patients with non-
neuropathic MS pain had similar alpha peak frequencies as the
older HC group. As such, the older HC group showed a trend of
peak alpha frequency slowing compared with the younger HC
group. Peak alpha frequency slowing with aging has already
been observed in multiple studies.10,27,33,84 Therefore, peak
alpha frequency slowing could be an indicator of the aging brain,
which could be accelerated by chronic pain. Accelerated gray-
matter loss in aging has been demonstrated in chronic pain
patients with fibromyalgia.42 The authors postulated that the
accelerated loss of gray matter could have resulted from
increased exposure to inflammatory agents, and prolonged
exposure to pain had negative effects in brain regions involved
with pain processing. Therefore, in an inflammatory disease
such as MS, inflammation from chronic pain may further
exacerbate the accelerated aging process of the brain. As
such, patients with MS mixed-NP may have thalamocortical
dysrhythmia as well as accelerated aging of the brain,
mechanisms which may work in isolation or in conjunction that
may have led to the slowing of the alpha power peak in many
regions of the dynamic pain connectome especially in the
regions involved with sensory processing. Interestingly, we have
previously shown that gray-matter abnormalities in chronic pain
patients with temporomandibular disorder are due to a complex
interaction between age and pain,52 which may show that there
are changes in brain morphology and brain function related to
chronic pain, which could be the result of a complex relationship
between aging and chronic pain.

We found a link between pain interference scores and the
abnormalities in alpha and beta oscillations in regions of the
ascending nociceptive pathway and the DMN. Interestingly, this
relationship was driven mainly by the patients with mixed-NP.
Pain interference is an item within the BPI, which measures the
degree to which pain interferes with daily activities. We found that
patients with mixed-NP had significantly greater pain interference
compared to those with NNP, and this could explain why the
patientswithmixed-NPwere the only ones to exhibit a relationship
between abnormal power and pain interference. Most of the
significant correlations between alpha and beta power and pain
interference were observed within regions of the ascending
nociceptive pathway. We also found that pain interference
correlated with alpha power in the PCC, a region of the DMN,
which is commonly abnormal in chronic pain patients5,34,53,76

including those with NP.9 The DMN is also implicated in mind
wandering away from pain.45 Therefore, the significant relation-
ship between alpha power and pain interference may represent
a mechanism by which patients may have difficulty ignoring their
pain, and thus their day to day activities are impacted the most by
their pain experience.

Chronic pain in MS does not occur in isolation, and so,
interpretation of these spectral band abnormalities should
consider the complex milieu of attentional and sensorimotor
conditions experienced by these patients. Chronic pain is also
highly comorbid with psychiatric disorders including depression
and anxiety and shares similar neural underpinnings.8 As such,
these factors must be taken into consideration when interpreting
our findings. In addition, caution must be used to interpret our
results that arose from measuring signals from deeper sources
such as the thalamus. Although we made careful methodological
considerations to extract only signals of interest, technical
limitations in MEG source reconstruction could still restrict the

ability to perfectly resolve deeper sources, resulting in mixed
signals (ie, signal leakage) from surrounding regions. This could
arise from the beamformer not being able to perfectly suppress
those adjacent sources because of reduced SNR. There is no
direct electrophysiological evidence to confirm the location of
oscillatory activity that we attributed to deep sources. However,
there is an increasing body of empirical evidence that demon-
strates the capability of MEG to detect weak signals originating
from deep brain structures such as the hippocam-
pus,13,31,40,50,62,63,73 amygdala,11–13,20,38 and thalamus.6,7,66,78

In addition, realistic simulations3,4,24,63 that examined beam-
former or minimum current estimate solutions to localize deep
generators have demonstrated that MEG is able to reliably detect
deep sources.

In conclusion, our study revealed that patients with MS-
related chronic pain, and especially those with mixed-NP, have
abnormalities in spectral power within the regions of the
dynamic pain connectome. Abnormal increases in alpha-band
power, decreases in beta-band power, and slowing of the alpha
power peak observed in patients with mixed-NP was mainly
observed in the nodes of the ascending nociceptive pathway. As
the increase in alpha power and slowing of the alpha peak
frequency was in line with previous research with NP patients,
this particular alteration in spectral profile may be a hallmark of
mixed-NP. Finally, correlations with pain interference scores
suggested that altered resting state spectral power may be
a robust neural correlate for pain interference in patients with MS
mixed-NP.
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