The Hospital for Sick Children Technology Assessment at SickKids (TASK)

APPENDICES

CASPOFUNGIN IN THE EMPIRIC TREATMENT OF FEBRILE NEUTROPENIA IN PEDIATRIC PATIENTS: A COMPARISON WITH CONVENTIONAL AND LIPOSOMAL AMPHOTERICIN B

Authors: Vania Costa, MSc
Research Associate, Child Health Evaluative Sciences
Wendy Ungar. MSc, PhD
Senior Scientist, Child Health Evaluative Sciences

Collaborators

Upton Allen, MD, Chief, Division of Infectious Diseases, The Hospital for Sick Children
John Doyle, MD, Haematology/Oncology, The Hospital for Sick Children
Lee Dupuis, MSc, Pharmacy, The Hospital for Sick Children
Shinya Ito MD, Clinical Pharmacology and Toxicology, The Hospital for Sick Children
Ahmed Naqvi, MD, Haematology/Oncology, The Hospital for Sick Children Toronto
Christopher Parshuram, MD, Critical Care Medicine, The Hospital for Sick Children
Lillian Sung, MD, Haematology/Oncology, The Hospital for Sick Children

Report No. 2008-01

Date: September 26th 2008

Available at:

http://lab.research.sickkids.ca/task/reports-theses/

EXTERNAL REVIEWER

Janet Martin, PharmD, MSc(HTA&M), Director, High Impact Technology Evaluation Centre (HiTEC), Co-Director, Evidence-Based Perioperative Clinical Outcomes Research Group (EPiCOR), London Health Sciences Centre, London, Ontario

ACKNOWLEDGEMENTS

We thank the following individuals for their assistance in this report:

Sheila Gandhi, Haematology/Oncology, The Hospital for Sick Children

Beverley Hales, Pharmacy, The Hospital for Sick Children

Angela Trope, Pharmacy, The Hospital for Sick Children

Judy Van Clieaf, Child Health Services Director, The Hospital for Sick Children

Dinsie Wiliams, Department of Health Policy Management & Evaluation, University of Toronto

Funding for this research was provided by the Hospital for Sick Children Research Institute.

CONFLICTS OF INTEREST

The authors declare that they do not have any conflicts of interest.

TABLE OF CONTENTS

ABBREVIATIO	NS AND ACRONYMS	4
APPENDIX 1	SYSTEMATIC LITERATURE REVIEW METHODOLOGY	5
APPENDIX 2	PEDIATRIC PATIENTS, CHARACTERISTICS, EFFICACY AND SAFETY RESULTS OF	ϽF
	NON-COMPARATIVE STUDIES	6
APPENDIX 3	PEDIATRIC PATIENTS – SUMMARY OF SAFETY RESULTS OF NON-COMPARATIV	VΕ
	STUDIES	. 18
APPENDIX 4	ADULT PATIENTS: CHARACTERISTICS, EFFICACY AND SAFETY RESULTS OF	
	RCTS	. 21
APPENDIX 5	ADULT PATIENTS: NON-RANDOMIZED COMPARATIVE STUDIES	. 27
APPENDIX 6	ADULT PATIENTS: SUMMARY OF STUDY RESULTS	. 31
APPENDIX 7	SAFETY- CASPOFUNGIN USED CONCOMITANTLY WITH CYCLOSPORINE	. 41
APPENDIX 8	${\tt SYSTEMATIC}\ {\tt REVIEWS}, {\tt HEALTH}\ {\tt TECHNOLOGY}\ {\tt ASSESSMENT}\ {\tt REPORTS}, {\tt AND}$	
	ECONOMIC ANALYSES	. 44
APPENDIX 9	COST OF ANTIFUNGAL-RELATED COMPLICATIONS	. 48
APPENDIX 10	AMPHOTERICIN B NEPHROTOXICITY COSTING STUDIES	. 51
REFERENCES		. 54

ABBREVIATIONS AND ACRONYMS

ALT alanine aminotransferase

AML acute myeloid leukemia

ALL acute lymphoid leukemia

AST aspartate aminotransferase

BUN blood urea nitrogen

CI confidence interval

EMEA European Medicines Agency

HSCT hematopoietic stem cell transplantation

HTA Health Technology Assessment

IDSA Infectious Disease Society of America

IRF impaired renal function

SD standard deviation

APPENDIX 1 SYSTEMATIC LITERATURE REVIEW METHODOLOGY

Pubmed

Caspofungin*: caspofungin[All Fields] OR caspofungin/csa[All Fields] OR caspofungin/mk[All Fields] OR caspofungin/voriconazole[All Fields] OR caspofungin's[All Fields] OR caspofungine[All Fields] OR caspofungine[All Fields]

Cancidas: ("caspofungin"[TIAB] NOT Medline[SB]) OR "caspofungin"[Substance Name] OR cancidas[Text Word]

Echinocandin*: echinocandin[All Fields] OR echinocandin/pneumocandin[All Fields] OR echinocandine[All Fields] OR echinocandins[All Fields]

Medline, Centre for Reviews and Dissemination, The Cochrane Library caspofungin\$.mp. OR cancidas.mp. OR echinocandin.mp.

EMBASE

exp CASPOFUNGIN/ OR cancidas.mp. OR exp ECHINOCANDIN/

Abstracts of conferences of the following societies were also searched for studies with caspofungin in pediatrics:

- Infectious Disease Society of America (IDSA)
- European Society of Clinical Microbiology and Infectious Diseases
- European Society for Paediatric Infectious Diseases
- Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC)

Databases of clinical trials were also searched for study results in pediatric patients treated with caspofungin. The list of databases suggested in a publication from the Institute of Health Economics, Alberta, Canada, and the Alberta Heritage Foundation for Medical Research was adopted as the base of our search ¹. The list of the websites searched is given below:

Table 1.1 List of websites included in the search

Database	Website
CCT Current Controlled Trials	www.controlled-trials.com
CenterWatch	www.centerwatch.com
Clinical Study Results	www.clinicalstudyresults.org
ClinicalTrials.org	www.clinicaltrials.gov
IFPMA Clinical Trials Portal*	www.ifpma.org/clinicaltrials.html
National Cancer Institute of Clinical Trials Group	www.ctg.queensu.ca
National Cancer Institute (United States) Clinical Trials database	www.cancer.gov/clinical_trials
National Research Register	www.update-software.com/National
TrialsCentral	www.trialscentral.org

IFPMA = International Federation of Pharmaceutical Manufacturers and Associations

APPENDIX 2 PEDIATRIC PATIENTS, CHARACTERISTICS, EFFICACY AND SAFETY RESULTS OF NON-COMPARATIVE STUDIES

 Table 2.1
 Pediatric study characteristics

Study (year)	Study treatments	Inclusion criteria	Study outcomes
Cesaro et al. ² (2004)	Caspofungin IV 50mg/m ²	Proven, probable or	Complete response: resolution
Invasive fungal infections	max 50mg (70mg/m² max	possible invasive fungal	of all clinical signs and
Refractory	70mg loading dose on day	infections*	symptoms attributed to the
N=10	1)	Failure** or progression§	fungal infection and complete
Prospective	Liposomal amphotericin B	of invasive fungal infection	or almost complete resolution
	(5-6mg/kg/day)	with empirical antifungal	of radiological findings.
	Voriconazole administered	therapy for 7-14 days	Partial response: major
	after treatment completion in	(liposomal amphotericin B	improvement or resolution of
	both arms.	1-3mg/kg/day)	the attributable clinical signs
			and symptoms and ≥ 50%
			improvement in radiological
			signs. Favourable response:
			complete or partial response.
Merlin et al. ³ (2006)	Caspofungin IV	Probable or proven	> 7 days on caspofungin
Invasive fungal infections	≤ 45kg: 1-4mg/kg/day (mean	invasive fungal infection¶	Successful response:
1 st line or salvage	1.88mg/kg		complete or partial response.
therapy	> 45kg: 50mg (70mg loading		Safety
N=20	dose on day 1)		Survival (day 7-180)
Retrospective	Combination with:		
	Amphotericin B (different		
	formulations), flucytosine,		
	Fluconazole, voriconazole.		
Koo et al. 4 (2007)	Caspofungin IV	Patients > 2 years old	Favourable overall response
Febrile neutropenia	(50mg/m²/day, maximum	Febrile despite 5-7 days	according to Walsh et al.
N=67 / Retrospective	70mg/day)	treatment with broad	criteria ⁵
		spectrum antibiotics	
		AML, HSCT, or intolerant	
		to amphotericin B	
Groll et al. ⁶ (2006)	Caspofungin IV (dose	< 18 year old	Favourable response:
Immunocompromised	determined by the treating	Received at least one	complete or partial response.
patients	physician)	dose of caspofungin	Absence of breakthrough
N=64	Median maintenance dose:	Treatment started before	fungal infection and survival at
Retrospective	1.07mg/kg/day	July 2004	the end of treatment with
	35 (55%): 50mg/day		caspofungin (empirical
			therapy)
			Complete resolution of

			symptoms and marked
			improvement in endoscopic
			appearance
Cesaro et al. (2007)	Caspofungin IV 50mg/m ²	Pediatric patients	Favourable response
Invasive Aspergillosis	(70mg/m² loading dose on	Hematology or	Survival (100-day, overall)
N=40	day 1)	oncological underlying	Safety
Prospective	Combination therapy	conditions	Complete response: resolution
	(amphotericin B, azoles)	Proven or probable	of all clinical signs and
	(* , * * * * * * * * * * * * * * * * *	invasive aspergillosis	symptoms attributed to the
			fungal infection and >90%
			resolution of radiological
			findings.
			Partial response: major
			improvement or resolution of the
			attributable clinical signs and
			symptoms and ≥ 50%
			improvement in radiological
			signs.
			Favourable response:
			complete or partial response
Walsh et al.8 (2005)	Caspofungin IV	Inclusion criteria	Pharmacokinetics
Pharmacokinetic study	2-11 year-olds: 1mg/kg/day,	2-17 years	Safety
N=39	50-70mg/m ² /day	New onset of fever (≥38C)	
Prospective	2-17 year-olds: 50mg/day	and neutropenia (< 500	
		/mm ³)	
		Exclusion criteria	
		Proven or probable	
		invasive fungal infection	
		Concomitant use of	
		cyclosporine A, rifampin,	
		phenytoin, phenobarbital,	
		carbamazepine, other	
		antifungals	
		Elevated levels of liver	
		enzymes and INR	
Franklin et al. ⁹ (2003)	Caspofungin IV	Pediatric patients	Safety (laboratory
Safety study	≥ 50kg: 50-75mg/day	≥ 1 dose of caspofungin	abnormalities) graded
N=25 / Retrospective	< 50kg: 0.8-1.6mg/kg/day		according to the National
			Cancer Institute Common
			Toxicity Criteria

N=39 / Interim results	50mg/m ² (70mg/m ² on day	3 months – 17 years	defined)
presented at a conference	1)	Proven or probable fungal	Safety
Invasive infections	Maximum dose: 70mg/day	infections	
		Exclusion criteria	
		Liver enzymes'	
		abnormalities or liver	
		disease	
		Concomitant use of	
		cyclosporine or rifampin	

AML=acute myelogenous leukemia; HSCT=hematopoietic stem cell transplantation; INR=international normalized ratio
*According to international criteria.
**Persistence of fever and/or absence of ≤ 50% reduction in number and/or size of known lesions.
\$Rapid worsening of clinical conditions, documented through X-ray, CT scan, ultrasound of new lesions
¶ Proven or probable infections according to the consensus committee definition of the European Organization for Research and Treatment of Cancer/Mycosis Study Group of the National Institute of Allergy and Infectious Diseases.

Table 2.2 Pediatric studies, baseline characteristics

Baseline	Cesaro et al. ²	Merlin et al.3	Zaoutis et al. 10	Koo et al.⁴
Characteristics	N=10	N=20	N=38	N=67
ANTIFUNGAL				
MONOTHERAPY OR				
COMBINATION?	COMBINATION	COMBINATION	MONOTHERAPY	MONOTHERAPY
Median age (range in	13 (6-24)	12 (0.1–16)	Mean (range): 8.5 (0.5	8 (1-17)
years)			– 17)	
Premature (neonates)	0	0	N/A	0
Haematological				
malignancies, n(%)	10 (100%)	17 (85%)	NR	26 (39%)
Stem cell transplantation	3 (30%) allogeneic	5 (25%)		-
Neutropenia	8 (80%) < 500 /	16 (80%) < 500 /	7 (18%)	67 (100%)
	mm^3	mm ³		
Invasive fungal	-	-	39 (100%)	7(10%)
infections	-	7 (35%)	27 (71%)	3 (4.5%)
Invasive candidiasis	9 (90%)	11 (55%)	10 (26%)	2 (3%)
Invasive aspergillosis	-	-	1 (3%)	2 (3%)
Other				
Prior therapy, n (%)				
Azoles	1 (10%)	4 (20%)	NR	2 (3%)
Amphotericin B*	9 (90%)	9 (45%)		2 (3%)
Combination	-	-		-
Duration of prior therapy,	3 (2-10)	NR	NR	NR
days, median (range)				
Refractory to prior	10 (100%)	13 (65%)	NR	NR
therapy, n (%)				
Combination drugs in				
addition to caspofungin				
Caspofungin monotherapy	-	6 (30%)	NR	67 (100%)
Azoles	-	9 (45%)		-
Amphotericin B*	10 (100%)	8 (40%)		-
Combination of the two	-	-		-
Concomitant	1 (10%)	5 (25%)	0	19 (28%)
cyclosporine/ tacrolimus				
Renal failure	NR	4 (20%) –	NR	0
		amphotericin B or		
		cyclosporine		
Hepatic failure	NR	1 (5%) (GVHD)	NR	0
Age, years, median	11.5 (0.4 – 17.9)	11.1 (1.2-17.9)	7.7 (2-16)	9.8 (0.3-26.2)

(range)				
Premature (neonates)	N/A	N/A	0	
Hematological	48 (75%)	37 (93%)	22 (56%)	-
malignancies	36 (56%)	13 (33%)	18 (46%)	14 (56%)
Stem cell transplantation				
Neutropenia	33 (51%) < 500 /	31 (78%) < 500 /	39 (100%) < 500 / mm ³	13 (52%) < 500 /
	mm^3	mm ³		mm ³
Invasive fungal	-	40 (100%)	Safety evaluation	Safety evaluation
infections	8 (17%)	-		
Invasive candidiasis	23 (48%)	40 (100%)		
Invasive aspergillosis	17(35%)	-		
Mould infections				
Prior therapy		33 (83%)	N/A	21 (84%)
Azoles	12 (18.7%)	-		-
Amphotericin B*	27 (42.1%)	-		-
Combination	25(39%)	-		-
Duration of prior therapy,	19.5 (1-94)	NR	N/A	NR
days, median (range)				
Refractory to prior	38 (59%)	33 (83%)	N/A	NR
therapy, n (%)				
Combination drugs in				
addition to caspofungin	44 (69%)	40 (100%)	39 (100%)	
Caspofungin	20 (31%)	0	-	4 (16%)
monotherapy	-	9 (25%)	-	-
Azoles	-	18 (50%)	-	21 (84%) –
Amphotericin B*	-	9 (25%)	-	liposomal
Combination of the two				amphotericin B
Concomitant cyclosporin	19 (30%)	14 (35%) includes	0	NR
A		tacrolimus		

N/A=not applicable; NR=not reported
*Different formulations of amphotericin B were used
**Possible, probable or proven

Table 2.3 Pediatric studies, results (invasive aspergillosis or invasive fungal infections)

Study results	Cesaro et al. ² (2004) N=9	Merlin et al. 3 N=11	Cesaro et al. ⁷ N=36	Groll et al. ⁶ N=62	Zaoutis et al. ¹⁰ N=10
ANTIFUNGAL MONOTHERAPY?	COMBINATION	COMBINATION	COMBINATION	COMBINATION	MONOTHERAPY
Duration of therapy,	17 (6-40)	35 (7-280)	29 (3-382) – any	37 (3-218)	42.7 (6-87)
days, median			combination		(mean, range)
(range)					
Complete or					
partial response	8 (89%)	10 (91%)	21 (53%) (100	49 (79%)	5 (50%) -
Relapse			days of		success
Mortality (related		4/11 (36%)	diagnosis)		
to infection)	0				
Mortality (overall)	1 (10%) median	6 (55%)		25%	
	follow-up:125 days		15 (30%) (100	(3 months:	
	(9-335)		days)	30%)	
	Overall favourable		20 (50%) median		
	response at the end of		follow-up 0.7		
	follow-up: 80% (8/10		years, 80% had		
	patients received oral		active		
	voriconazole		aspergillosis		

Table 2.4 Pediatric studies, results (Invasive candidiasis)

Study results	Merlin et al. ³ N=7	Zaoutis et al. ¹⁰ N=27
ANTIFUNGAL		
MONOTHERAPY?	COMBINATION	MONOTHERAPY
Duration of therapy, days,	35 (7-280 days)	12.3 (2-42) days
median (range)		(mean, range)
Complete response, n(%)	4 (57%)	22 (81%) - success
Partial response, n(%)	1 (14%)	
Complete or partial response,	5 (71%)	
n(%)		
Relapse		
Mortality (related to infection)	2 (29%) – 90 days , 4 (57%) mean	
Mortality (overall)	follow-up: 102 days	

Table 2.5 Pediatric studies, results (febrile neutropenia)

Study results	Koo et al.⁴	Walsh et al. 8
	Febrile neutropenia	
ANTIFUNGAL MONOTHERAPY?	MONOTHERAPY	MONOTHERAPY
Duration of therapy, days, median	8 (1-129)	5.5 (2-28)
(range)		
Favourable response, n(%)	53 (79%)	Breakthrough
Mortality (related to infection), n(%)	0	infections: 2 (5.1%)
Mortality (overall), n(%)	6 (9%)	

Table 2.6 Pediatric studies, safety

Safety	Cesaro et al. ²	Merlin et al.3	Zaoutis et al.	Koo et al. ⁴
ANTIFUNGAL	N=10	N=20	N=39	N=67
MONOTHERAPY				
OR COMBINATION ?	COMBINATION	COMBINATION	MONOTHERAPY	MONOTHERAPY
Cyclosp./tacrol.	NR	25%	0	28%
Renal insufficiency	NR	20%	NR	NR
Hepatoinsuficiency	NR	5%	0	NR
Serious adverse	NR	NR	0	0
event (drug related)				
Drug-related clinical	NR	9 (45%)*	11 (28%)	NR
adverse event				
Laboratory-related	NR	NR	12 (31%)	NR
adverse event				
Withdrawal due to	NR	0	0	1 (1.5%) - rash
toxicity				
Dose adjustment,	1 (100%) -dose	NR	NR	NR
immunosuppresives	adjusted according			
	to blood levels			
Increase in serum	0 (>2x baseline)	0 (renal function	NR	1 (1.5%)
creatinine		deterioration)		
Increase in liver	NR	5 (25%) mild	NR	1 (1.5%)
enzymes		(1 conc.		
		Cyclosporine)		
Hypokalemia	8 (80%)	2 (10%) (moderate)	NR	3 (4.5%)
	<2.5mEq/L**			
	(possibly related to			
	amphotericin B)			
Increased ALT	0	NR	4 (10%)	NR
Increased AST	NR	NR	7 (18%)	NR
Increased Bilirubin	2 (20%) 2-2.5x ULN¶	NR	NR	NR
Increased BUN	NR	NR	NR	NR
Hypomagnesemia	NR	NR	2 (5%)	1 (1.5%)
Decrease in serum	NR	NR	2 (5%)	NR
phosphorus				
Vomiting	NR	2 (10%)*	NR	1 (1.5%)
Nausea	NR	2 (10%)*	NR	1 (1.5%)
Fever	0	NR	4 (10.3%)	NR
			(1 moderate,	
			infusion-related)	

Chills	0	NR	NR	NR
Thrombophlebitis	2 (20%)	1 (5%) at the	1(2.5%) -severe,	NR
thrombosis		injection site	infusion-related	
Rash	NR	NR	3 (8%)	2 (3%)
Livedo	NR	1 (5%)**	NR	NR
Decrease in	NR	NR	2 (5%)	NR
eosinophils				

ALT =alanine aminotransferase; AST (aspartate aminitransferase); NR=not reported

*Possibly drug-related (Caspofungin).

**Possibly related to Liposomal amphotericin B

§ Considered as related to caspofungin (does not specify the extent, e.g possibly, probably), however amphotericin B and/or fluconazole were being used concomitantly. The authors state that it is difficult to separate the contribution of caspofungin and other concomitant drugs or underlying conditions to the development of these events.

[¶] Patients had venous-occlusive disease after treatment with gentuzomab-ozogamycin.

Table 2.7 Pediatric studies, safety

Safety	Groll et al. ⁶	Walsh et al.8	Franklin et al.9	Cesaro et al. ⁷
ANTIFUNGAL	N=64	N=39	N=25COMBINATION	N=40
MONOTHERAPY?	COMBINATION (69%)	MONOTHERAPY	(84%)	COMBINATION
cyclosporine/tacrolimus	30%	NR	NR	35%
Renal insufficiency	NR	NR	NR	NR
Hepatoinsuficiency	NR	NR	NR	NR
Serious adverse event	NR	0	0	0
(drug related)				
Drug-related clinical	34 (53%)*	5 (12.8%)	3 (12%) possibly	NR
adverse event			0 – probable or	
			definitely-related	
Laboratory-related	NR	2 (5.1%)	NR	NR
adverse event				
Withdrawal due to	0	0	0	0
toxicity				
Infusion-related event	NR	2 (5.1%)	NR	NR
Increase in serum	14 (22%) ≥1.5x	NR	NR	NR
creatinine	baseline			
	3 (5%) ≥3x			
	baseline			
Renal function	NR	6 (16.7%)	NR	NR
deterioration		creatinine		
		clearance		
		decreased 75% the		
		baseline		
		(concomitant with		
		other kidney toxic		
		drugs)		
Elevated proteinuria	NR	1 (2.6%)*	NR	NR
Hypokalemia	NR	1 (2.6%)*	3 (12%)*	NR
		caspofungin-related	caspofungin-	
			related	
Increased ALT	17 (26.5%) ≥1.5x	NR	1 (4%)*	NR
	baseline*			
	9 (14%) ≥3x			
	baseline*			
Increased AST	12 (18.7%) ≥1.5x	1 (2.6%)*	NR	NR
	baseline*			
	7 (10.9%) ≥3x			
	baseline*			
	Dascille			

Increased Alkaline	6 (9%) ≥1.5x	NR	NR	NR
phosphatase	baseline*			
	1 (1.5%) ≥3x			
	baseline*			
Increased Bilirubin	8 (12.5%) ≥1.5x	NR	2 (8%)*	NR
	baseline*			
	3 (4.6%) ≥3x			
	baseline*			
Decreased	NR	NR	1 (4%)*	NR
hemoglobin				
Fever	26 (40.6%)	1 (2.6%)* (rigours)	NR	NR
Vomiting	19 (29.6%)	NR	NR	NR
	(includes nausea)			
Chills	NR	1 (2.6%)*	NR	NR
Diarrhea	7 (10.9%)	1 (2.6%)*	NR	NR
Phlebitis	NR	1 (2.6%)*	NR	NR
Rash	4 (6.2%) (skin	1 (2.6%)*	NR	1 (2.5%)
	eruptions)			
Headache	5 (7.8%)	NR	NR	NR

ALT =alanine aminotransferase; AST (aspartate aminitransferase); NR=not reported

^{*}Possibly drug-related (Caspofungin).

^{**}Possibly related to Liposomal amphotericin B

[§] Considered as related to caspofungin (does not specify the extent, e.g possibly, probablY), however amphotericin B and/or fluconazole were being used concomitantly. The authors state that it is difficult to separate the contribution of caspofungin and other concomitant drugs or underlying conditions to the development of these events.

[¶] Patients had venous-occlusive disease after treatment with gentuzomab-ozogamycin.

<u>APPENDIX 3 PEDIATRIC PATIENTS – SUMMARY OF SAFETY RESULTS OF NON-COMPARATIVE STUDIES</u>

Altogether, a total of 304 pediatric patients were included in these studies. Some studies included patients with concomitant use of cyclosporine ^{2 3 4 6 7} and one study included patients with renal or hepatic failure ³.

One study reported renal toxicity measured by a 75% decrease in creatinine clearance from baseline in 6/39 (15%) patients 8 . The patients were receiving other nephrotoxic drugs such as aminoglycosides or cytotoxic chemotherapy either concomitantly or shortly preceding the caspofungin administration, therefore, it was not possible to attribute causality to caspofungin 8 . One study reported increases in serum creatinine $\geq 1.5x$ baseline in 14 (21.8%) patients, and $\geq 3x$ baseline in 3 (5%) patients 6 . The events were considered possibly related to caspofungin, however, 69% of the patients included in the study were receiving combination therapy with amphotericin B formulations (80%) and/or azoles, and 1/3 was receiving cyclosporine 6 . A study reported an increase in serum creatinine in one (1.5%) patient 4 .

Hypokalemia was reported in 2.6%-16% of the patients receiving caspofungin ^{4 8 9}. The clinical significance of these abnormalities was not reported. One study reported hypokalemia (< 2.5 mEq) in 8/10 (80%) patients receiving a combination of caspofungin and liposomal amphotericin B². In all eight cases, the hypokalemia was considered by the investigators as possibly related to liposomal amphotericin B².

Possibly caspofungin-related increases in liver enzymes alanine aminotransferase (ALT), alkaline phosphatase (AST), or bilirubin are shown in the table below. Patients were using caspofungin in monotherapy or combination therapy ^{2 3 4 6 8 9 10}. The clinical significance of these abnormalities was not discussed by the authors. Groll et al. did not observe a difference in the percentages of patients with increases in liver enzymes between patients with and without concomitant use of cyclosporine⁶.

Table 3.1 Pediatric studies, frequencies of increases in liver enzymes

	Increases in Liver Enzymes					
Study	AST ALT		Alkaline	Bilirubin	Liver enzymes in	
			phosphatase		general	
Groll et al. ⁶ (> 3x	7	9 (14%)**	1 (1.5%)**	3 (4.6%)**	NR	
baseline value)	(10.9%)**					
N=64						
Cesaro et al. ² (2-2.5x	NR	0	NR	2 (20%)	NR	
ULN)						
N=10						
Walsh et al.8	1 (2.6%)¶	NR	NR	NR	NR	
N=39						
Franklin et al.9	NR	1 (4%)*	NR	2 (8%)*	NR	
N=25						
Koo et al.⁴	NR	NR	NR	NR	1 (1.5%)*	
N=67					(hepatotoxicity)	
					(concomitant	
					cyclosporine use)	
Merlin et al.3	NR	NR	NR	NR	5 (25%)*	
N=20					(1 patient-concomitant	
					cyclosporine use)	
Zaoutis et al. ¹⁰	4 (10%)¶	7 (18%)¶	NR	NR	NR	
N=39						

The magnitude of increase specified if reported in the studies.

ALT= alanine aminotransferase / AST=aspartate aminotransferase / NR=not reported / ULN=upper limit of the normal range

Clinical adverse events were reported in 12% to 53% of the patients treated with caspofungin in five studies ^{3 6 8 9 10}. Patients received the drug either as monotherapy or in combination with other antifungals, and some patients used cyclosporine concomitantly, which may explain part of the wide variation in the frequency of clinical adverse events. Common clinical events considered by the investigators as at least possibly related to caspofungin are shown in table below.

^{*} considered as possibly-related to caspofungin as judged by the investigators.

^{**} considered as potentially drug-related by the investigators

 $[\]P$ - considered as caspofungin-related by the investigator

Table 3.2 Pediatric studies, frequencies of common clinical adverse events considered possibly related to caspofungin

Study	Thrombophlebi	Nausea /	Diarrhe	Rash	Headache	Fever	Livedo
	tis / phlebitis	Vomiting	а				
Cesaro et	2 (20%)	NR	NR	NR	NR	0	NR
al. ² N=10							
Merlin et	1 (5%) – at	2 (10%)	NR	NR	NR	NR	1 (5%)
al. ³ N=20	injection site						
Groll et	NR	19	7	4 (6.2%)	5 (7.8%)	26	NR
al. ⁶ N=64		(29.6%)	(10.9%)	skin		(40.6%)	
				eruptions			
Walsh et	1 (2.6%)	NR	1 (2.6%)	1 (2.6%)	NR	1 (2.6%) /	NR
al. ⁸ N=39						rigours	
Cesaro et	NR	NR	NR	1 (2.5%)	NR	NR	NR
al. ⁷ N=40							
Koo et al.4	NR	1 (1.5%)	NR	2 (3%)	NR	NR	NR
N=67							
Zaoutis et	1 (2.5%) –	NR	NR	3 (8%)	NR	4 (10.3%)	NR
al. ¹⁰ N=39	severe, infusion-						
	related						

NR=not reported

APPENDIX 4 ADULT PATIENTS: CHARACTERISTICS, EFFICACY AND SAFETY RESULTS OF RCTS

Table 4.1 Adult studies, RCT characteristics

Study (year of publication)	Comparative treatments	Study Population	Study outcomes
Walsh et al. (2004) ⁵	Caspofungin IV 70mg on day 1 and 50mg once a	Inclusion criteria	Results stratified according to risk and
Empiric therapy in persistent	day subsequently	≥ 16 years	systemic antifungal prophylaxis.
fever and neutropenia	Liposomal amphotericin B IV 3mg/kg weight	Previous cancer chemotherapy or HSCT	Analysis: modified intention-to-treat§
N=1,095 (caspofungin: 556 /	daily	Absolute neutrophil count < 500/ mm ³	Primary outcome
liposomal amphotericin B: 539)	The dose could be increased to 70mg daily and	Fever (> 38° C)	Favourable overall response according
	5mg/kg daily, respectively in case of persistent	Parenteral antibiotics for ≥ 96 hours	to five criteria*.
Multicentre study	fever (≥ 5 days) and worsening of patient	Exclusion Criteria	Primary analysis: non-inferiority of
	condition.	Inadequately managed infection	caspofungin to liposomal amphotericin B
	Duration of infusion not reported.	Karnofsky score < 30	(modified intention-to-treat population)
	Pre-medication was allowed after day 1.	Abnormal laboratory results for selected liver	Secondary outcomes
	Length of treatment	tests and platelet counts	Evaluation of each of the 5 components
	Patients without evidence of baseline or	Need for use of rifampin, cyclosporine	of the primary outcome.
	breakthrough infections:	Concomitant systemic antifungals requirement	Survival times
	At least 72 hours after the absolute neutrophil		<u>Safety</u>
	count > 500/mm ³ .		Assessed daily from start of the
	Patients with baseline or breakthrough infections:		treatment until 14 days after its
	Treatment duration determined by the investigator		completion.
	Treatment was recommended to last at least 14		Main analysis: Nephrotoxicity,
	days or at least 7 days after resolution of		evaluated in patients with a creatinine
	neutropenia and symptoms.		clearance > 30 ml/minute

HSCT=hematopoietic stem cell transplantation

^{*} Primary outcome criteria:

¹⁻Successful treatment of any baseline fungal infection.

²⁻ absence of any breakthrough fungal infection during therapy or within 7 days of the end of treatment.

³⁻ Survival for 7 days after the end of treatment.

⁴⁻ No premature discontinuation of the study therapy due to drug-related toxicity or lack of efficacy. 5- Resolution of fever during neutropenia to a temperature < 38° for at least 48 hours.

[§] Randomized patients with fever and neutropenia who received at least one complete dose of the study drug.

Table 4.2 Adult RCT, baseline characteristics

Baseline characteristics Walsh et al. ⁵		
	Empiric therapy of febrile neutropenia	
	Caspofungin	Liposomal
	N=556	amphotericin B
		N=539
Female, n (%)	238 (42.8%)	247 (45.8%)
Age, yr, Median (range)	51(17-83)	49 (16-83)
Prior antifungal prophylaxis, n (%)	313 (56.3%)	304 (56.4%)
High risk, n (%)	146 (26.3%)	122 (22.6%)
Allogeneic HSCT, n (%)	36 (6.5%)	39 (7.2%)
Relapse of acute leukemia, n (%)	110 (19.8%)	83 (15.4%)
Primary diagnosis		
Acute myelogenous leukemia, n (%)	364 (65.5%)	339 (62.9%)
Acute lymphocytic leukemia, n (%)	57 (10.3%)	50 (9.3%)
Non-Hodkin's lymphoma, n (%)	58 (10.4%)	62 (11.5%)
Neutropenia	556 (100%)	539 (100%)
Neutrophil count < 100/ mm ³	400 (71.9%)	406 (75.3%)

MDS=myelodysplastic syndrome

Table 4.3 Adult RCT, clinical outcomes

Clinical Outcomes	Walsh et al. ⁵			
	Empiric treatment of persistent and neutropenia			
	Caspofungin	Liposomal	Absolute Difference, % (95%	
	N=556	Amphotericin B	CI), p value if reported	
		N=539		
Duration of treatment, days	Median: 11	Median: 10 (range:	-	
	(range:1-90)	1-90)		
Favourable overall response*				
Unstratified analysis, n (%)	190 (34.2%)	181 (33.6%)	-	
Stratified analysis**, n (%)	190 (33.9%)	181 (33.7%)	0.2% (-5.6 , 6.0)	
High risk patients	63 (43.2%)	46 (37.7%)	5.4% (-6.3 , 17.2)	
Low risk patients	127 (31%)	135 (32.4%)	-1.4% (-7.7 , 4.9)	
Antifungal prophylaxis	105 (33.5%)	100 (32.9%)	-	
No antifungal prophylaxis	85 (35%)	81 (34.5%)	-	
Successful treatment of baseline	14 (51.9%)	7 (25.9%)	25.9% (0.9 , 51), p=0.04	
fungal infection				
Absence of breakthrough infection	527 (94.8%)	515 (95.5%)	-0.8% (-3.3 , 1.8), p=0.56	
Survival for ≥7 days after	515 (92.6%)	481 (89.2%)	3.4% (0 , 6.8), p=0.05	
treatment completion¦				
Resolution of fever and neutropenia	229 (41.2%)	223 (41.4%)	-0.2% (-6 , 5.6), p=0.95	
Treatment discontinuation due to:	57 (10.3%)	78 (14.5%)	4.2% (0.3 , 8.1), p=0.03	
lack of efficacy	30 (5.4%)	34 (6.3%)	-0.9% (-3.7 , 1.9)	
toxicity	27 (4.9%)	44 (8.2%)	-3.3% (-6.2 , -0.4)	
Probable or proven infections§				
Aspergillus (all)	5/12 (41.7%)	1/12 (8.3%)	-	
Candida (all)	8/12 (66.7%)	5/12 (41.7%)	-	

Amph amphotericin; CI= confidence interval; N=number

- 2- Absence of any breakthrough fungal infection during therapy or within 7 days of the end of treatment.
- 3- Survival for 7 days after the end of treatment.
- 4- No premature discontinuation of the study therapy due to drug-related toxicity or lack of efficacy.
- 5- Resolution of fever during neutropenia to a temperature < 38°C for at least 48 hours.
- ** The analysis was stratified according to patient's risk status and use of systemic antifungal prophylaxis. | Deaths were due mostly to complications of the underlying diseases or infections and were distributed evenly between the two groups. Mortality rates including the period beyond 7 days after treatment completion were 10.8% and 13.7% in the caspofungin and liposomal amphotericin B, respectively, however, the number of patients dropped significantly after day 7, i.e., 547 and 523 respectively at day 7, 82 and 80 respectively at day 28, and 6 for both groups at day 63,making a comparison between the two groups, difficult.
- § Defined by histologic or microbiologic documentation for all filamentous fungal infections, microbiologic documentation for candidemia, and histologic documentation or characteristic radiologic features for chronic disseminated candidiasis. Based on the criteria defined by the European Organization for Research and Treatment of Cancer and the National Institute of Allergy and Infectious Diseases Mycosis Study Group.

^{*} Favourable overall response defined by:

¹⁻Successful treatment of any baseline fungal infection.

Table 4.4 Adult RCT, study-drug related adverse events (possibly, probably, definitely related to the study drug as defined by the investigator)

Safety	RCT - Empiric treatment of persistent and neutropenia			
	Walsh et al. ⁵ or data reported to EMEA ¹¹ when specified			
	Caspofungin	Liposomal	Difference, % (95% CI)	
	N=564	Amphotericin B		
		N=547		
Serious adverse events	9 (1.6%) ¹¹	16 (2.9%) ¹¹	-1.3 (-3.1 , 0.4) ¹¹	
Serious drug-related laboratory	0 ¹¹	1 (0.1%) ¹¹		
adverse events (source: EMEA ¹¹) –				
See table 4.5 for details				
Withdrawal due to toxicity (table 4.5)	28 (5%)	44 (8%)	-3.1 (-6 , -0.02)	
Nephrotoxicity*	2.6%	11.5%	-8.9 (-12 , -5.9)	
Elevated serum creatinine	1.2%	5.5%	-4.3 (-6.4 , -2.1)	
Elevated blood urea nitrogen	1.9%	3.1%	-1.2 (-3.9 , 1.5)	
Events during drug infusion	35.1%**	51.6%**	-16.4 (-22.2 , -10.7)	
Severe events during drug infusion ¹¹	5.1%	8.6%	NS	
Clinical drug-related events¶	47%	59.6%	-12.6 (-18.4 , -6.8)	
Fever	17%	19.4%	-2.4 (-6.9 , 2.2)	
Chills	13.8%	24.7%	-10.9 (-15.5 , -6.2)	
Rash	6.2%	5.3%	0.9 (-1.8 , 3.6)	
Headache	4.3%	5.7%	-1.4 (-4 , 1.1)	
Hypokalemia	3.7%	4.2%	-0.5 (-2.8 , 1.8)	
Nausea	3.5%	11.3%	-7.8 (-10.9 , -4.7)	
Vomiting	3.5%	8.6%	-5.0 (-7.8 , -2.2)	
Dyspnea	2.0%	4.2%	-2.3 (-4.3 , -0.2)	
Flushing	1.8%	4.2%	-2.4 (-4.4 , -0.4)	
Laboratory (drug-related) events¶	22.5%	32%	-9.5 (-14.7 , -4.3)	
Increased ALT	8.7%	8.9%	-0.1 (-3.5 , 3.2)	
Increased AST	7%	7.6%	-0.6 (-3.7 , 2.4)	
Increased alkaline phosphatase	7%	12%	-5.1 (-8.5 , -1.6)	
Hypokalemia	7.3%	11.8%	-4.5 (-7.9 , -1.0)	
Increased total serum bilirubin	3%	5.2%	-2.1 (-4.5 , 0.2)	

ALT= alanine aminotransferase / AST=aspartate aminotransferase / EMEA=European Medicines Agency / NS=not statistically significant/ Lip. Amph. B – liposomal amphotericin B

^{*} Defined by a doubling of the baseline serum creatinine level or an increase ≥1mg/dL in patients with elevated serum creatinine at enrollment. Patients with creatinine clearance < 30ml/minute were not included in this analysis.

^{**} most frequently reported: fever, chills, headache, nausea, and vomiting⁵. Most difference between the two groups in chills and fever¹¹.

[§] Defined by a doubling of the baseline serum creatinine level or an increase ≥1mg/dL in patients with serum creatinine above the upper limit of the normal range at enrollment. Patients with creatinine clearance < 30ml/minute were not included in this analysis.

 \P Events classified as either possibly, probably or definitely related to the drug⁵. Events were reported if the rate was > 2% in at least one study group, for laboratory events, only the results of tests performed in >100 patients were reported⁵.

Table 4.5. Adult RCT, serious drug-related adverse events and reasons for drug discontinuation – RCT comparing caspofungin and liposomal amphotericin B in adult patients with febrile neutropenia

Safety	RCT - Empiric treatment of persistent and neutropenia		
	Source: data reported to EMEA ¹¹		
	Caspofungin N=564	Liposomal amphotericin B N=547	
Serious drug-related	9 (1.6%) ¹¹	16 (2.9%) ¹¹	
adverse events	- Renal failure or insufficiency (n=3)	- Respiratory system (n=3), respiratory	
	- Rash, patients recovered (n=2)	distress, dyspnea, hipoxia	
	- Infusion-related hypersensitivity reaction	- Hypersensitivity reaction (n=3)	
	that resolved over 3 hours after the infusion	- Anaphilaxis (n=1)	
	(n=1)	- Anaphilactic reaction (n=1)	
	- Hyperbillirubinemia in patient with	- Acute renal failure (n=2)	
	metastatic liver and lungs disease (n=1)	- Renal insufficiency (n=1),	
	- Congestive heart failure, hypokalemia,	- Hypokalemia (n=1)	
	and extension of a myocardial infarction in	- Ventricular fibrillation with cardiac	
	a patient with AML and underlying	arrest (n=1)	
	cardiovascular disease (n=1)	- Fungal infection (n=1)	
	- Bronchiolitis obliterans with organizing	- Grand mal seizure (n=1)	
	pneumonia on lung biopsy done 3 days	- Adverse event not clear in one case.	
	after the end of the treatment (n=1)		
Serious drug-related	0 ¹¹	1 (0.1%) ¹¹	
laboratory adverse		- Increased serum total bilirubin	
events			
Withdrawal due clinical	25 (4.4%)	35 (6.4%)	
drug-related adverse	- Adverse events in the skin (n=10), 1 case	- hypersensitivity reactions (n=4)	
events	of serious rash	- anaphylaxis or anaphylactic-type	
	- Hepatobiliary system or hyperbilirubinemia	reactions (n=3)	
	(n=5)	- fever (n=4)	
	not clear in the remainder	not clear in the remainder	
Withdrawal due	3 (0.5%)	13 (2.4%)	
laboratory drug-related	- Hepatic dysfunction, increased one or	- Abnormal liver function tests, increased	
adverse events	more liver enzymes AST, ALT, alkaline	bilirubin, alkaline phosphatase, AST,	
	phosphatase, total and direct bilirubin (n=3)	ALT) (n=9)	
		- Increased creatinine (n=4)	
Deaths possibly related	1 (0.17%)	2 (0.37%)	
to the study drug	Due to a renal insufficiency considered	cardiac arrest (n=1)	
	possibly related to caspofungin	respiratory distress (n=1) considered	
		possibly related to liposomal	

		amphotericin B	
ALT= alanine aminotransferase / AST=aspartate aminotransferase / EMEA=European Medicines Agency			

APPENDIX 5 ADULT PATIENTS: NON-RANDOMIZED COMPARATIVE STUDIES

Table 5.1. Adult studies, non-randomized comparative studies' characteristics

Study (year of	Comparative treatments	Study Population
publication)		
Ellis et al. ¹²	Caspofungin IV 70mg loading dose and	Inclusion criteria
Invasive fungal	50mg/daily (N. episodes =24, 23 patients)	- Acute hematological malignancy
infections or febrile	Liposomal amphotericin B IV (N.	- Negative bacterial culture
neutropenia and	episodes=49, 34 patients):	- Target organ negative febrile
hematological	3mg/kg/day in patients with non-	neutropenia unresponsive to broad
malignancies	responsive to broad spectrum antibiotics	spectrum antibiotics or patients with
N= 73 episodes (57	5mg/kg/day – invasive fungal infections	invasive fungal infection**
patients)	Dose could be increased to up to	
Retrospective	10/mg/kg/day in progressive fungal	
Open label	infections	
Treatment allocation	Treatment was continued until fever and	
according to the	neutropenia resolution and if the drug	
physician's judgement	had been given for at least 10 days (14	
	days for invasive fungal infections).	
	Responsive patients received 14-day	
	voriconazole treatment	

^{**} Invasive fungal infection defined according to the European Organization for Research and Treatment of Cancer's Invasive Fungal Infections Cooperative Group.

Table 5.2 Adult studies, non-randomized comparative studies (baseline characteristics)

Ellis et al. ¹²		
Febrile neutropenia, inva	sive fungal infections	
Caspofungin	Lipid amphotericin B	
N=23	N=49	
38.7 (SD 16)	33.1 (SD 11.3)	
23 (100%)	34 (100%)	
NR	NR	
N/A	N/A	
N/A	N/A	
4 (17%)	4 (12%)	
4 (17%)	20 (41%)	
9 (38%)	14 (29%)	
NR	NR	
NR	NR	
	Febrile neutropenia, inva Caspofungin N=23 38.7 (SD 16) 23 (100%) NR N/A N/A 4 (17%) 4 (17%) 9 (38%) NR	

HSCT=hematopoietic stem cell transplantation / N/A=not applicable / NR=not reported / SD=standard deviation

Table 5.3 Adult studies, non-randomized comparative studies (study results)

Study results	Ellis et al. 12	
	Invasive fungal infections or febrile neutropenia	
	Caspofungin	Liposomal
		amphotericin B
	N=24	N=49
Duration of therapy,	10 7.2)	8.6 (4.9)
days, mean (SD)		
Favourable	12 (50%)	49 (90%)
response*		

CI= confidence interval / NR=not reported / SD=standard deviation

- 1- Successful treatment of any baseline fungal infection.
- 2- Absence of any breakthrough fungal infection during therapy or within 7 days of the end of treatment.
- 3- Survival for 7 days after the end of treatment.
- 4- No premature discontinuation of the study therapy due to drug-related toxicity or lack of efficacy.
- 5- Resolution of fever during neutropenia to a temperature < 38°C for at least 48 hours.

^{*} Favourable responses were defined by the following endpoints:

Table 5.4 Adult studies, non-randomized comparative studies (safety)

Safety	Ellis et al. 12
	N=24
Serious adverse event	0
Clinical adverse events	58.3%
Withdrawal due to toxicity	8.3%
Nephrotoxicity	16.7% (elevated creatinine)
Hypokalemia	33.3%
Hepatotoxicity	20.8%
Rigour	16.7%

AST=aspartate transferase / ALT=alanine transferase / NR=not reported

The study by Marr et al. reported similar median serum levelsof liver enzymes or creatinine between the two groups¹³. Percentage of patients with increased levels was not reported¹³.

APPENDIX 6 ADULT PATIENTS: SUMMARY OF STUDY RESULTS

Efficacy

Randomized controlled trials

In our report, we have concentrated on the only RCT in patients with febrile neutropenia⁵ as this is the focus of our report. It consisted of a randomized, double-blind, multicentre study that evaluated the efficacy of caspofungin IV 50mg/day (loading dose 70mg on day 1) compared to liposomal amphotericin B IV (3mg/kg/day) in patients ≥ 16 years who presented with fever and neutropenia and who had undergone previous cancer chemotherapy or HSCT ⁵. Some of the exclusion criteria were presence of abnormal liver function and platelet levels, and concomitant use of rifampin, cyclosporine or other systemic antifungals ⁵. The study was designed to evaluate if caspofungin was not inferior to liposomal amphotericin B in the overall treatment response in the modified intention-to-treat population ¹ ⁵.

As multiple outcomes were evaluated in the study by Walsh et al. ⁵, we focused on those defined as primary, as well as treatment relapse and survival if available (summarized below). Safety outcomes are discussed separately.

Empirical antifungal treatment in patients with persistent fever and neutropenia

One RCT evaluated the use of caspofungin in the empirical treatment of adult patients with persistent fever and neutropenia ⁵. It consisted of a randomized, double-blind, multicentre study that evaluated the efficacy of caspofungin IV 50mg/day (loading dose 70mg on day 1) compared to liposomal amphotericin B IV (3mg/kg/day) in patients ≥ 16 years who presented with fever and neutropenia and who had undergone previous cancer chemotherapy or HSCT ⁵. Some of the exclusion criteria were presence of abnormal liver function and platelet levels, and concomitant use of rifampin, cyclosporine or other systemic antifungals ⁵.

The study was designed to evaluate if caspofungin was not inferior to liposomal amphotericin B in the overall treatment response in the modified intention-to-treat population⁵. A favourable overall treatment response was defined by five criteria², all of which had to be met. The study treatment was administered for up to 72 hours after the neutrophil count reached $\geq 500/\text{mm}^3$ in patients without breakthrough fungal infections, otherwise, the treating physician decided the duration of the therapy, however it was recommended to last for at least 14 days or 7 days after the resolution of the neutropenia and symptoms ⁵.

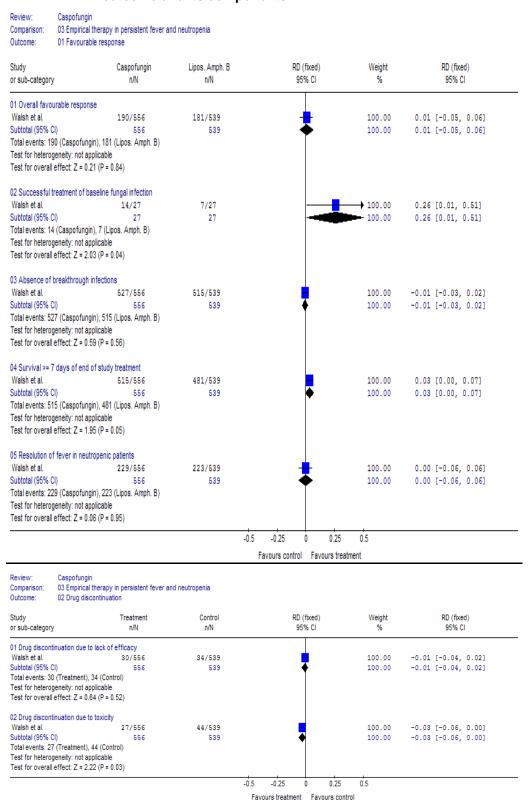
31

randomized patients with persistent fever and neutropenia who received at least one complete dose of the study drug

² 1- Successful treatment of any baseline fungal infection.

²⁻ Absence of any breakthrough fungal infection during therapy or within 7 days of the end of treatment.

³⁻ Survival for 7 days after the end of treatment.


⁴⁻ No premature discontinuation of the study therapy due to drug-related toxicity or lack of efficacy.

⁵⁻ Resolution of fever during neutropenia to a temperature < 38° for at least 48 hours.

Among the 1123 randomized patients and 1111 who received treatment, 1095 patients were included in the modified intention-to-treat analysis, 556 and 539 in the caspofungin and liposomal amphotericin B groups, respectively⁵. Approximately 94% of the patients presented with a hematological malignancy, and approximately 64% with acute myeloid leukemia ⁵. One-hundred and ninety (33.9%) patients in the caspofungin group and 181 (33.7%) in the liposomal amphotericin B presented an overall favourable response to therapy (difference: 0.2%, 95% confidence interval (CI): -5.6, 6.0) ⁵. Therefore, caspofungin was considered as non-inferior to liposomal amphotericin B according to pre-specified criteria ⁵. Results of the overall favourable response and of its five components are shown in Appendix 4 and in the figure below. There was a trend towards a higher rate of favourable response with caspofungin compared to liposomal amphotericin B in most of these five components. The only outcome that showed a statistically significant difference between the groups was the successful treatment of baseline infection, i.e., among the 27 patients/group with an evidence of a baseline fungal infection, successful outcome was observed in 14/27 (51.9%) in the caspofungin group and 7/27 (25.9%) in the liposomal amphotericin B group (absolute difference: 25.9%, 95% CI: 0.9%, 51%) (figure below)⁵. However this result must be interpreted with caution due to 1) the multiple comparisons undertaken, which increases the chance that a statistically significant result occurs by chance, 2) the small sample size (n=27/group) of this subgroup, and 3) the fact that the study was not designed to evaluate this outcome individually (not the primary outcome).

Patient follow-up in this study was relatively short, i.e., during the treatment (median duration: 10-11 days) and for two weeks thereafter⁵. The concomitant use of drugs that may interact with caspofungin or other antifungals under evaluation such as cyclosporine, rifampin, tacrolimus, ritonazole, ritonavir among others was not evaluated in the RCTs as the co-administration of these drugs was an exclusion criterion ⁵.

Figure 6.1 RCT in adult patients with febrile neutropenia. Results of the primary outcome and its components.

Source: Walsh et al. 5

Percentages may differ slightly from the publication due to rounding and due to the fact that we are showing unadjusted results.

Comparative non-randomized studies

We identified one study comparing caspofungin to liposomal amphotericin B in patients treated for febrile neutropenia¹² as described below.

A retrospective study compared caspofungin and liposomal amphotericin B in the treatment of febrile neutropenia or invasive fungal infections in adult patients with hematological malignancies ¹². Treatment assignment was done according to the treating physician's judgement¹². A total of 57 patients were included in the study, 23 treated with caspofungin and 34 treated with liposomal amphotericin B¹². In patients with febrile neutropenia, 3/8 (37.5%) treated with caspofungin and 7/12 (58.3%) treated with liposomal amphotericin B showed a favourable treatment response³ (p=0.65) (unadjusted results). In patients with invasive fungal infections, favourable responses were observed in 4/12 (33.3%) and 15/26 (57.7%) in the caspofungin and liposomal amphotericin B groups respectively (p=0.16) (unadjusted results) ¹². Patients treated with caspofungin had a higher risk of mortality compared to patients in the liposomal amphotericin B group, adjusted odds ratio (OR): 7.6 (95% confidence interval (CI): 1.2, 45.5) ¹². Additional details about this study are provided in Appendix 5.

Difficulties in interpreting the results of this study arise from the small sample size and from the fact that the treatment allocation was not randomized. Although in some cases the results were adjusted for potential confounders, there is still a possibility that unmeasured or residual confounding was present.

Safety – Adult patients

Randomized controlled trial

We have summarized below the safety results of the caspofungin RCT by Walsh et al.⁵ that included adult patients with febrile neutropenia. Adverse events were monitored during the study and for 14 days after its completion ⁵. The investigators were responsible for ascertaining the association between the adverse events and the study drugs ⁵. Adverse events considered as caspofungin- or liposomal amphotericin B- related to any degree by the investigator are summarised below, additional information can be found in Appendix 4.

1. Successful treatment of any baseline fungal infection.

³ Defined by the following endpoints:

^{2.} Absence of any breakthrough fungal infection during therapy or within 7 days of the end of treatment.

^{3.} Survival for 7 days after the end of treatment.

^{4.} No premature discontinuation of the study therapy due to drug-related toxicity or lack of efficacy.

^{5.} Resolution of fever during neutropenia to a temperature < 38°C for at least 48 hours.

Serious drug-related adverse events

The publication by Walsh et al.⁵ did not report any drug-related serious adverse events. Drug-related serious adverse events that occurred during the same RCT (or during the 14-day follow-up) were reported to the regulatory agency of the European Union, EMEA¹¹, as summarized in the table below.

Table 6.1 Serious drug-related adverse events – Adult RCT comparing caspofungin and liposomal amphotericin B in adult patients with febrile neutropenia.

Safety	RCT - Empiric treatment of persistent and neutropenia		
	Source: data reported to EMEA ¹¹		
	Caspofungin	Liposomal amphotericin B	
	N=564	N=547	
Serious drug-related	9 (1.6%)	16 (2.9%)	
adverse events, n (%)	- Renal failure or insufficiency (n=3)	- Respiratory system (n=3), respiratory	
	- Rash, patients recovered (n=2)	distress, dyspnea, hipoxia	
	- Infusion-related hypersensitivity reaction	- Hypersensitivity reaction (n=3)	
	that resolved over 3 hours after the infusion	- Anaphilaxis (n=1)	
	(n=1)	- Anaphilactic reaction (n=1)	
	- Hyperbillirubinemia in patient with metastatic	- Acute renal failure (n=2)	
	liver and lungs disease (n=1)	- Renal insufficiency (n=1),	
	- Congestive heart failure, hypokalemia, and	- Hypokalemia (n=1)	
	extension of a myocardial infarction in a patient	- Ventricular fibrillation with cardiac arrest	
	with AML and underlying cardiovascular	(n=1)	
	disease (n=1)	- Fungal infection (n=1)	
	- Bronchiolitis obliterans with organizing	- Grand mal seizure (n=1)	
	pneumonia on lung biopsy done 3 days after	- Adverse event not clear in one case.	
	the end of the treatment (n=1)		
Serious drug-related	0	1 (0.1%) - Increased serum total bilirubin	
laboratory adverse			
events			
Withdrawal due to	25 (4.4%)	35 (6.4%)	
clinical drug-related	- Adverse events in the skin (n=10), 1 case of	- hypersensitivity reactions (n=4)	
adverse events	serious rash	- anaphylaxis or anaphylactic-type reactions	
	- Hepatobiliary system or hyperbilirubinemia	(n=3)	
	(n=5)	- fever (n=4)	
	not clear in the remainder	not clear in the remainder	
Withdrawal due to	3 (0.5%)	13 (2.4%)	
laboratory drug-related	- Hepatic dysfunction, increased one or more	- Abnormal liver function tests, increased	
adverse events	liver enzymes AST, ALT, alkaline	bilirubin, alkaline phosphatase, AST, ALT)	
	phosphatase, total and direct bilirubin (n=3)	(n=9)	
		- Increased creatinine (n=4)	


Deaths possibly related	1 (0.17%)	2 (0.37%)
to the study drug	due to a renal insufficiency considered	cardiac arrest (n=1), respiratory distress
	possibly related to caspofungin	(n=1) considered possibly related to the
		drug

ALT= alanine aminotransferase ; AST=aspartate aminotransferase ; EMEA=European Medicines Agency; AML = acute myeloid leukemia

Withdrawal of study drug due to adverse events

When caspofungin was compared to liposomal amphotericin B in 1111 adult patients with febrile neutropenia in the study by Walsh et al., a -3.1% absolute difference (95% CI: -6, -2) in treatment withdrawal due to adverse events was observed (caspofungin: 5%, liposomal amphotericin B: 8%, p=0.04) (figure below) ⁵.

Figure 6.2 Adult RCT, rates of withdrawal of the antifungal treatment due to adverse events

Source: Walsh et al. ⁵

Nephrotoxicity

Nephrotoxicity defined as a doubling of the baseline serum creatinine level or an increase ≥1mg/dL in patients with elevated serum creatinine at enrollment, was measured in adult patients who had a creatinine clearance of at least 30ml/minute in the study by Walsh et al.⁵. There was a 8.9% (95% CI: -12, -5.9, p<.001) absolute difference in the frequency of nephrotoxicity between caspofungin (2.6%) and liposomal amphotericin B (11.5%) (figure 11) ⁵.

Elevations in serum creatinine and blood urea nitrogen (BUN), which are measures of renal function impairment, were also reported more often with liposomal amphotericin B, compared to

caspofungin ⁵ as shown in the figure below. The difference was not statistically significant for BUN. The clinical significance and magnitude of the increase was not specified by the authors.

Renal function toxicities Caspofungin vs. Lipossomal Amphotericin B 35% 30% % of patients with increase 25% 20% p<.001 ■ Caspofungin 15% Liposs Amph B 11.5% 10% NS 5.5% 5% 3.1% 2.6% 1.9% 1.2% 0% Nephrotoxicity Elevated serum creatinine Elevated BUN Renal function test

Figure 6.3 Adult RCT, frequencies of renal function toxicity

Source: Walsh et al. 5

Nephrotoxicity was defined as a doubling of the baseline serum creatinine level or an increase ≥1mg/dL in patients with elevated serum creatinine at enrollment ⁵. Patients with creatinine clearance < 30ml/minute were not included in this analysis⁵.

NS=not statistically significant

Drug infusion-related events

The frequency of drug infusion-related events was lower with caspofungin compared to liposomal amphotericin B ⁵. The figure below shows the results reported. The most frequently reported infusion-related events were fever, chills, headache, nausea, and vomiting ⁵.

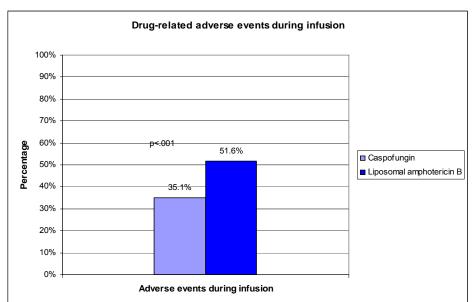


Figure 6.4 Adult RCT, frequencies of adverse events during drug infusion

The most frequently reported infusion-related events were fever, chills, headache, nausea, and vomiting 5 Percentages values are rounded up.

Clinical drug-related adverse events

The most common clinical drug-related adverse events reported were fever, chills, rash, headache, nausea, vomiting, and phlebitis (figure 13). There was a trend towards a lower rate of these events with caspofungin compared to liposomal amphotericin B (figure below) ⁵.

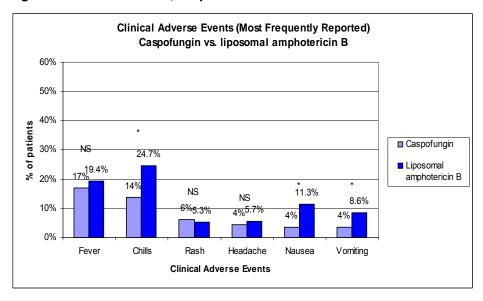


Figure 6.5 Adult RCT, frequencies of clinical adverse events

Source: Walsh et al. 5. * Statistically significant / NS= not statistically significant

Statistical significance was based on the 95% confidence interval of the absolute difference between the two groups.

Hypokalemia

A lower frequency of hypokalemia with caspofungin (7.3%) compared to liposomal amphotericin B (11.8%) (difference: -4.5%, 95% CI: -7.9 , -1.0) was also observed (figure below) 5 . The frequency of clinically relevant hypokalemia was similar between the two groups, i.e., 3.7% and 4.2%, respectively (absolute difference: -0.5% (95% CI: -2.8 , 1.8) 5 .

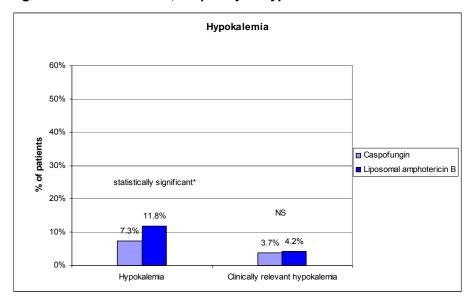
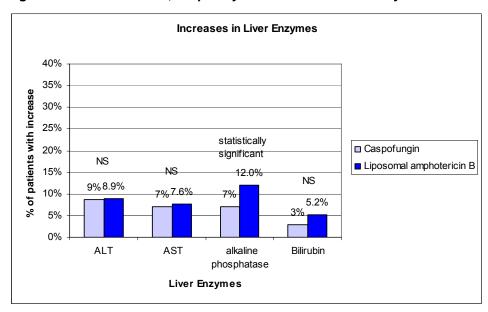


Figure 6.6 Adult RCT, frequency of hypokalemia


Sources: Walsh et al. ⁵. NS=not statistically significant

Liver enzymes abnormalities

Caspofungin showed a similar frequency of liver enzyme elevations compared to liposomal amphotericin B (statistically significantly lower for alkaline phosphatase) ⁵ (Figure below).

^{*}Statistical significance based on the 95% confidence interval of the absolute difference between the two groups

Figure 6.7 Adult RCT, frequency of increases in liver enzymes

Source : Walsh et al. ⁵. NS=not statistically significant Statistical significance based on the 95% confidence interval of the absolute difference between the two groups ALT= alanine aminotransferase / AST=aspartate aminotransferase

APPENDIX 7 SAFETY- CASPOFUNGIN USED CONCOMITANTLY WITH CYCLOSPORINE

Due to the nature of the underlying diseases of patients with invasive fungal infections, the co-administration of cyclosporine and antifungals is common¹⁴. Since trials in healthy volunteers receiving caspofungin and cyclosporine concomitantly showed that some patients developed elevations of liver function enzymes possibly related to this drug combination, co-administration of the two drugs is recommended to be used only in situations where the benefits outweigh the risks¹⁵. Some investigators evaluated the hepatotoxicity in patients with the use of caspofungin concomitantly with cyclosporine in adult and pediatric patients ^{4, 6, 14, 16 17 18 19 20 21}. Most of the patients in these studies were adults who had undergone HSCT or solid organ transplants ^{14, 16 17} ¹⁸. The rates of hepatotoxicity with the combination are reported in these studies are summarized in the table below.

The authors of a retrospective chart review of 20 patients who underwent stem cell transplantation concluded that the concomitant use of caspofungin and cyclosporine results in a low hepatic toxicity in the patient population as shown by a transient increase in liver enzymes during treatment ¹⁸ (table below). During the concomitant treatment with caspofungin and cyclosporine that lasted for a median of 16.5 days (5-42), there was an increase in the median level of liver enzymes to above the upper normal level with most enzymes ¹⁸. Given the large standard error of the mean (SEM) and graphs provided ¹⁸ there was a large variation in the change in the level of liver enzymes experienced by the patients. In a retrospective observational study performed at The Hospital for Sick Children (Toronto), among 19 patients who received cyclosporine concomitantly with caspofungin, there was one event of hepatotoxicity (1.5%) [increase in aspartate aminotransferase (AST)]⁴.

In general, the authors concluded that when used in a population in which the potential benefits outweight the potential risks, the caspofungin/cyclosporine combination seemed tolerable ^{14 16 17} but that larger prospective studies are necessary ^{14 16 17}. The authors of the retrospective chart review that included 20 patients concluded that the concomitant use of caspofungin and cyclosporine resulted in a low hepatic toxicity in patients who underwent an allogeneic stem cell transpant ¹⁸. A multicenter survey showed a trend towards a higher frequency of a \geq 3-fold increase in liver enzymes from baseline in patients receiving the combination compared to those who didn't (table) ⁶. The authors concluded that they did not observe overall differences between patients who used (n=19) and those who did not use the combination (n=45)⁶. Similarly, Glasmacher et al. did not observe a harmful interaction in patients using caspofungin concomitantly wit cyclosporine (n=14) and concluded that the concomitant use of the two drugs may be considered, however, close monitoring of the hepatic function is recommended in these

patients¹⁹. The figures provided by the authors suggest an increase in enzyme levels measured during the treatment for ALT and gama GT which decreases after the end of treatment (individual statistical tests not provided) ¹⁹. Morrissey et al. believe that although there may be an increase in liver enzyme levels when the combination caspofungin-cyclosporine is used, clinically significant hepatotoxicity has not been reported and drug discontinuation is seldom necessary²⁰.

Table 7.1 Rates of hepatotoxicity in patients treated with caspofungin concomitantly with cyclosporine

Study	N / Treatment / Median	Baseline	Hepatotoxicity during treatment
	<u>duration</u>	<u>Hepatotoxicity</u>	
Sanz-Rodriguez et	N=14 (1 pediatric)	10 (71%)	10 (71%) ALT and/or AST > ULN
al. ^{3, 16}	Caspofungin concomitant		1 (7%) – related to caspofungin
Retrospective	with Cyclosporine IV*		(transient and not clinically significant),
(chart review	Duration: not clear		therapy not discontinued
Saner et al. 17	N=12 adults	All patients	1 (8%), ALT and AST: 11-fold increase
Prospective	Caspofungin concomitant	underwent	Clinically significant
	with Cyclosporine IV	liver	Not believed to be related to
	Duration: median: 14 days	transplantation	caspofungin/cyclosporine combination
	(range: 8-14)		
Marr et al. 14	N=40 (2 pediatrics)	12 (30%)	4 (10%) – discontinued treatment due to
Retrospective	Caspofungin concomitant		hepatotoxicity, 2 (5%) possibly due to
(database study)	with Cyclosporine*		caspofungin/cyclosporine**
	Duration: median: 17.5		24 (60%) – increased liver enzymes§,
	days (range: 1-290)		6 (15%) possibly due to
			caspofungin/cyclosporine**, not clinically
			relevant
Christopeit et al. 18	N=20	Not reported	Median enzyme levels (SEM) before /
Retrospective	Caspofungin concomitant		during / after caspofungin treatment
chart review	with cyclosporine		ALT: 0.39 (0.65) / 0.77 (17) / 0.56
	Duration: 16.5 days (5-		(0.77) µmol/L (upper normal: 0.74)
	42) - caspofungin		AST: 0.28 (0.45) / 0.71 (26.26) / 0.60
	Length of concomitant		(0.84) µmol/L (upper normal: 0.58)
	treatment – not given		GGT:1.27 (1.78) / 2.33 (3.41) / 1.77
	Patients with concomitant		(4.32) µmol/L (normal: 0.92)
	azole drugs excluded		Bilirubin: 23 (19.69) / 38 (55.41) / 20
			(67.23) μmol/L (normal: 17)
Koo et al. 4	N=19 (pediatrics)	Not reported	1/19 (5.3%) – possibly related to
Retrospective	Caspofungin concomitant		caspofungin
chart review	with cyclosporine		Hepatotoxicity not defined
	Treatment duration: not		

	reported		
Groll et al. 6	N=64 (pediatrics)	Not reported	With combination / without
Retrospective	19 / 45 with and without		Increase ≥ 3x baseline
multicenter survey	combination.		AST: 3 (16%) / 4 (7%) p=0.42
	Median duration of		ALT: 3 (16%) / 6 (13%) p=1
	caspofungin therapy: 37		Alkaline phosphatase: 1 (6%) / 0 p=0.3
	days – duration of		Bilirubin: 0 / 3 (9%) p=0.5
	combination not provided		
Glasmacher et	N=14 (adults), 104 did	Not reported	Differences were statistically significant
al. ¹⁹	not use the combination.		when enzyme levels before, during, and
Prospective	Caspofungin treatment		after concomitant treatment were
multicenter study	duration: median: 15		compared, however, not when before
	days – duration of		and after were compared.
	combination not provided		Values not given, figures suggest an
			increase in enzyme levels measured
			during the treatment for ALT and GGT
			which decreases after the end of
			treatment.
Morrisey et al. 20	N=8 (adults)	10 (18.5%) –	3/8 (38%) – elevation in liver enzymes ≥
Prospective study	Median duration: 15 days	pre-existing	3x baseline / ≥ 5x upper normal limit .
	(combination)	liver disease	No clinical hepatotoxicity.
Trenschel et al.21	N=14 (adults) / 28 historic	Not reported	Only mean difference in bilirubin before
Retrospective	controls		and after treatment was statistically
study	Caspofungin treatment		significantly higher in patients using
	duration: median: 13		caspofungin-cyclosporine compared to
	days – duration of		historic control.
	combination not provided		

ALT=alanine amino transaminase; AST=aspartate amino transaminase; GGT=gama glutamyl transferase; IV=intravenous / SEM=standard error of the mean * Concomitant use for at least 1 day ** The authors stated that other causes of hepatotoxicity other than the caspofungin/cyclosporine combination were possible ¹⁴.
§ - > 3x baseline or > 5x upper limit of normal ¹⁴.

ASSESSMENT REPORTS, AND ECONOMIC ANALYSES

Systematic Reviews

A systematic review published in 2007 included 5 RCTs and 1 sub-study and evaluated the efficacy and safety of caspofungin compared to other antifungals in adult patients²². Studies on different treatment indications such as the empiric treatment of febrile neutropenia, invasive candidiasis, oropharyngeal and/ or esophageal candidiasis using different comparators such as different formulations of amphotericin B, fluconazole, and itraconazole were included 22. The authors compared the caspofungin results with the pooled results obtained with different antifungals and different patient populations²². The rates of overall success were 52.6% and 44.7% with caspofungin and the pool of antifungals, respectively, and 13.8% vs. 16.9%, respectively for overall mortality (no measure of variation was provided) 22. Safety outcomes were combined in random or fixed effects meta-analyses²². These included discontinuation of therapy due to drug toxicity (OR: 0.25, 95% confidence interval (CI) 0.07 . 0.85), nephrotoxicity (doubling of serum creatinine or ≥ 1mg/dL serum creatinine elevation if the level was elevated at baseline) (OR 0.23, 95% CI: 0.14, 0.36), hypokalemia (OR: 0.3, 95% CI: 0.12, 0.76) and fever (OR: 0.26, 95% CI: 0.08, 0.79) for caspofungin vs. the other antifungals²². The authors concluded that caspofungin has a better cure rate and less adverse effects than amphotericin B but mentioned that their systematic review had limitations such as the inclusion of different caspofungin doses. different lengths of antifungal treatment, and different treatment indications²². Moreover, different antifungals with different risks of adverse events were pooled into one comparator group which renders the results difficult to interpret.

Health Technology Assessment (HTA) Reports

Two HTA reports were identified in our systematic reviews, one published in 2001 by the Canadian Agency for Drugs and Technologies in Health (CADTH)²³, and one published in 2004 by the Institute for Clinical Effectiveness and Health Policy in Argentina²⁴.

The report from CADTH was published as an Emerging Drug List report on the use of caspofungin for the treatment of invasive aspergillosis in patients refractory or intolerant to other antifungals such as amphotericin B and itraconazole²³. The authors concluded that the evidence available was scarce as no RCTs had been fully published and therefore the benefits and role of the drug could not be evaluated at that point²³.

The report from the Institute for Clinical Effectiveness and Health Policy in Argentina published in 2004 evaluated the efficacy and costs of caspofungin in patients with fungal infections²⁴. It was based on five RCTs that included patients with febrile neutropenia invasive candidiasis, and

esophageal or oropharyngeal candidiasis. The authors concluded that caspofungin is not inferior in efficacy to amphotericin B in immunodeficient patients with invasive candidiasis and aspergillosis, and presents a lower incidence of adverse events, however with a higher cost²⁴. The authors believe that caspofungin could be an alternative in cases where liposomal amphotericin B would be prescribed and it would be the only alternative in cases of fungal infections refractory to other antifungals²⁴.

Economic Analyses

Five economic analyses comparing caspofungin to liposomal amphotericin B in adult patients with febrile neutropenia ^{25 26 27 28 29} were identified in the literature. The clinical outcomes of these analyses were derived from published RCTs in adult patients.

A study by Wingard et al. evaluated the cost-effectiveness of caspofungin vs. liposomal amphotericin B in febrile neutropenic patients²⁵. The clinical outcome consisted of the rate of impaired renal function (IRF)⁴ and was based on the data from an adult RCT²⁵. Costs included antifungal drug acquisition costs and those associated with treating IRF²⁵. Drug acquisition costs were based on hospital prices in the United States ²⁵. Costs with IRF were based on published literature that evaluated the total hospitalization costs in patients who suffered nephrotoxicity compared to those without nephrotoxicity while on treatment with amphotericin B formulations²⁵. Costs are shown in 2003 US dollars²⁵. The costs per full-course of antifungal treatment used were \$6,942 and \$3,996 for liposomal amphotericin B and caspofungin, respectively and the cost per IRF episode was \$26,440²⁵. A short-term cost-effectiveness analysis was undertaken based on the duration of the antifungal treatment (mean 13 days, range 1-90) ²⁵. The authors reported cost savings of \$5,236/patient treated with caspofungin compared to lipossomal amphotericin B²⁵. The IRF costs were based on differences in total hospitalization costs rather than costs incurred specifically due to the renal impairment. In general in the studies in which IRF costs were based patients who developed nephrotoxicity also seemed to have a higher rate of more severe underlying diseases than patients who did not develop nephrotoxicity, which may have resulted in an overestimation of the IRF costs. Although some of these studies adjusted the IRF cost differences for patient characteristics there are still risks of residual or unmeasured confounding, which is corroborated by one of the authors³⁰ and other publications³¹. For instance in a study by Bates et al., used as one of the sources of IRF cost, the additional cost of treating nephrotoxicity alone was estimated at \$8,947 with an additional length of stay of 2.5 days compared to those not experiencing nephrotoxicity, whereas in the same study the additional total hospital cost (used in the caspofungin pharmacoeconomics analysis by Wingard et al.) was \$29,823 with an additional

⁴ Defined by a doubling of the baseline serum creatinine level or an increase ≥1mg/dL in patients with elevated serum creatinine at enrollment. Patients with creatinine clearance < 30ml/minute were not included in this analysis.

length of stay of 8.2 days³⁰ in patients that experienced nephrotoxicity compared to patients who didn't. Even though the cost-effetiveness analysis by Wingard et al. included sensitivity analyses with the objective of testing the robustness of the IRF costs these analyses did not lower the IRF costs enough to reach the cost of treating nephrotoxicity alone reported in the study by Bates et al.. Therefore it is not possible to infer what the cost-effectiveness results would be if nephrotoxicity costs alone were used as a base for IRF costs.

An economic analysis by Kaskel et al. yielded a cost saving of €96 (95% CI: €352, incremental €113) per patient treated with caspofungin compared to liposomal amphotericin B as an empirical therapy for suspected fungal infection when the cost of nephrotoxicity was taken into account²⁷.

An economic analysis from the UK compared the long-term cost-effectiveness of caspofungin compared to liposomal amphotericin B in adult patients with suspected fungal infections²⁶. The patients' lifetime was employed as the time horizon²⁶. Short-term clinical outcomes used in the analysis were obtained from an adult RCT and included treatment efficacy, probabilities of adverse effects associated with each drug, and mortality 1 week after treatment completion²⁶. Long-term mortality was extrapolated according to the life expectancy of the different underlying diseases presented by the RCT patients based on published literature²⁶. Quality-adjusted lifeyears were calculated based on preferences scores from the Registry from the Harvard School of Public Health 1997-2000²⁶. Costs included antifungal drugs' acquisition costs, costs to treat the treatment complications, and hospitalization costs and were calculated in 2005 sterling pounds²⁶. The analysis yielded a 0.55 (95% CI: 0.1, 0.97) life years gained and 0.4 QALY (95% CI: 0.13, 0.97) with caspofungin compared to liposomal amphotericin B²⁶. The mean total direct costs were CDN\$19,506 (\$13,896, \$25,129) 5 and CDN\$23,566 (95% CI: \$17,786, \$29,419) with caspofungin and liposomal amphotericin B, respectively²⁶. An acceptability curve showed that at willingness-to-pay values of CDN\$39,960 (£\$20,000) and CDN59,940 (£\$30,000) there is a 95% chance that caspofungin is cost-effective compared to amphotericin B.

An economic analysis comparing the use of caspofungin and liposomal amphotericin B uses as empirical treatment in adult patients with febrile neutropenia in Italy was published²⁸. The patients' lifetime was used as the time horizon for the analysis²⁸. Clinical outcomes were based on the RCT by Walsh et al.⁵ which was complemented by the life-expectancy of the patients alive at the end of the treatment and multiplied by the utility value based on the underlying conditions²⁸. Costs of treatment during the hospital stay were included in the model²⁸. Antifungal costs before and after switch if it was the case, costs of treatment of complications, and costs of hospital stay were

_

⁵ Values reported in sterling pounds: mean direct costs: 9,763 (95% CI: 6955 , 12577) with caspofungin, and \$11,795 (95% CI: \$8902 , 14724) with liposomal amphotericin B.

included in the model²⁸. Costs were based on Italian sources²⁸. The results showed that treatment with caspofungin resulted in 0.70 life-years lost (0.52-0.89), and 1.05 (0.84 – 1.29) with liposomal amphotericin B²⁸. QALYs lost were 0.50 (0.31-0.7) and 0.75 (0.47-1.03) respectively²⁸. Total treatment costs were estimated as \leqslant 8,351 (7,801 – 8,903) and \leqslant \$11,821 (11,168 – 12,494) with caspofungin and liposomal amphotericin B, respectively²⁸.

An economic evaluation of different treatment strategies used in the empiric antifungal treatment of adult patients with a high risk of developing invasive fungal infections in Spain was published²⁹. Voriconazole and caspofungin were compared to liposomal amphotericin B and amphotericin B lipid complex²⁹. The time horizon consisted of the course of antifungal treatment²⁹. Clinical outcomes such as response to treatment, treatment switches, and treatment complications were based on an observational study done in the hospital where the economic evaluation was done²⁹. Antifungal costs before and after switch if it's the case, diagnostic and laboratory tests, and hospitalization costs were included in the analysis and were based on costs from the hospital²⁹. Costs with treatment complications were not included²⁹. A total of 107 patients were included in the analysis, 53 treated with amphotericin B lipid complex group, 25 with liposomal amphotericin B, 25 with caspofungin, and 6 with voriconazole²⁹. The mean length of treatment was 10 days in the amphotericin B lipid complex and voriconazole groups, 8 in the liposomal amphotericin B group and 16 in the caspofungin group²⁹. The results showed that voriconazole was the most effective of the drugs evaluated with the lowest cost²⁹. The authors did not discuss the possible causes of differences in treatment duration among the groups. The comparability between the groups in the view of non-randomized treatment assignment and small sample sizes especially in the voriconazole group was also not discussed.

APPENDIX 9 COST OF ANTIFUNGAL-RELATED COMPLICATIONS

Complications reported in the RCT comparing caspofungin to liposomal amphotericin B in pediatric patients that are expected to either increase treatment costs and/or result in clinical consequences were included in our model. These included nephrotoxicity, hypokalemia, chills (rigour), rash, and nausea.

The RCT from which the data were derived did not provide a detailed definition of the complications other than nephrotoxicity. The clinical significance of these complications was not provided in the RCT.

The costs of treatment of each complication was estimated based on the literature and expert opinion and included hospitalization costs, diagnostic and laboratory tests, and healthcare professional fees as applicable.

Table 9.1 Resource use and cost of treatment of nephrotoxicity (doubling of serum creatinine*)

Resource	Unit cost	Quantity	Cost
Additional hospital stay	\$1,071** per day	2.5 days based on a study by Bates et al.§ (range 0 to 2.5 days)	\$ 2,677 (range \$0-\$ 2,677)
Medical consultations	\$29.20	2.5 (1 per additional day in hospital) (range 0-2.5)	\$73 (range \$0 - \$73)
Total cost	-	-	\$2,750 (variation \$0- 2,750)

^{*}Doubling of serum creatinine was the definition of nephrotoxicity adopted in the RCT study used as a source for our economic analysis³².

§Although several studies in adult patients have shown that nephrotoxicity increases the length of hospitalization from 0 to 8.2 days, we have decided to use the estimate of one of the studies that reported the increase in length of stay (LOS) specifically <u>associated with nephrotoxicity</u>, 2.5 days (vs. overall increase in LOS of 8.2 days) ³⁰ or zero (study which was restricted to patients with HSCT with cancer³⁴). The other studies compared the difference in LOS between patients without nephrotoxicity and with nephrotoxicity even though patients with nephrotoxicity also had more severe underlying diseases (bone marrow transplantation, cancer, acute leukemia etc.) which may have contributed to the increased LOS ^{35 36 37 38}. By using the data from studies that calculated the increased LOS associated with nephrotoxicity we believe that we avoided overly inflating the cost antifungal-related nephrotoxicity with costs that may be associated with more severe underlying diseases. The fact that a study that evaluated the impact of amphotericin B-related nephrotoxicity in the hospital LOS in a population restricted to patients with high risk of nephrotoxicity (HSCT with cancer) found no difference in LOS between patients who developed nephrotoxicity and those who didn't corroborates our point ³⁴.

^{**}Based on the daily treatment of a sample of febrile neutropenic patients included in a study conducted in our institution³³ described in session 8.1 of the report.

We assumed that no additional laboratory tests such as creatinine measurement would be necessary as a result of nephrotoxicity since it is already measured on a daily basis during the antifungal treatment.

Table 9.2 Resources and cost of treatment of hypokalemia

Resource	Quantity	Cost/day
Potassium IV infusion	1 mmol / kg over 4 hours ³³	\$0.53 (20 kg x 1 mmol +
(20 kg child)		20% wasting)
Serum potassium	2 additional serum potassium	\$6.24
measurements	measurements/day*	
Medical consultations	1 additional medical	\$29.2
	consultation per day to	
	evaluate serum potassium	
	level.*	
ECG¶	1 ECG exam for every 2	\$8.25
	patients	
Total cost/day	-	\$44.22

^{*} Serum potassium measurements and physician reassessment of potassium infusion are necessary during an episode of hypokalemia according to our institutions guidelines³⁹.

Table 9.3 Resources and cost of treatment of chills / rigour

Adverse Event	Quantity	Cost/day
Meperidine IV	0.5 mg/kg/dose 40	\$0.145 (10mg x 1.2
(20 kg child)		(20% wasting) x
		\$0.6/50mg)
Total cost/day		\$0.145

IV=intravenous

Table 9.4 Resources and cost of treatment of rash

Adverse Event	Quantity	Cost/day
Dyphenhydramine IV	1 mg/kg 1 to 2 times/day	\$0.69 (20mg x1.2 (20%
(20 kg child)		wasting) x 2 doses of
		\$0.72/50mg)
Total cost/day		\$0.69

IV=intravenous

^{¶ -} Some patients experiencing hypokalemia \leq 3 mmol/L are put on a cardiac monitor, an ECG may be requested if deemed necessary according to our institutions guidelines³⁹.

Table 9.5 Resources and cost of treatment of nausea

Adverse Event	Quantity	Cost/day
Dimenhydrinate IV	1 mg/kg/dose	\$2.04
(20 kg child)	3 doses*	
Or Dyphenhydramine	1 mg/kg	\$1.04 (20mg x 1.2
IV	3 doses*	(20% wasting) x 3
(20 kg child) – used		doses \$0.72/50mg)
more often than		
dimenhydrinate		
Total cost/day		\$1.04 or \$2.04

IV=intravenous

We assumed that patients who experience the complications above (except nephrotoxicity) would receive treatment for the complication for seven days.

Other complications reported in the RCT such as increases in liver enzymes, tachycardia, fever, and headache were not included in our model since they were not expected to increase the resource use/cost of treatment as explained below and since the RCT did not report any clinical consequences of these complications.

Patients with increases in liver enzymes do not receive a specific treatment, however the antifungal treatment may be switched to a different antifungal as a result of the hepatotoxicity ^{11 41} . We have assumed that cases where treatment switch due to hepatotoxicity is necessary would have been indirectly accounted for in the model in the arm drug switch. No additional treatment switch was assigned due to hepatotoxicity alone.

Patients who experience tachycardia may be put on a cardiac monitor according to expert opinion. The cost of using a cardiac monitor could not be quantified and given that a large number of patients may use the machine every year, we considered that its inclusion in the analysis would not impact the results.

Costs of treatment of fever and headache were not included since the treatments used for these complications may coincide with those used as a treatment of other complications. In order to avoid double-costing, and considering that the costs of treatment of fever and headache would be negligible and would not change our results, we decided not to include the cost of fever and headache in our analyses.

^{*} Medications to treat nausea may be administered up to every 4 hours, depending on the patient's need. We have assumed that 3 doses per day would be administered

APPENDIX 10 AMPHOTERICIN B NEPHROTOXICITY COSTING STUDIES

Table 10.1 Amphotericin B nephrotoxicity costing studies, study characteristics and results

Study	Drugs used	Adults or pediatrics	N	Indication	Underlyin g conditions	Increases in LOS in patients with nephrotoxici ty vs. no nephrotoxici ty	Difference in costs in patients with nephrotoxici ty	Comments	Nephro toxicity definition	Method of control for confounding
Wingard et al. ³⁵ (US - retrospectiv e)	Amphoterici n B	Adults and adolescents (14-85)	239	Invasive aspergillosis	HSCT - 37% / SOT - 26%	-	-	Patients who had nephrotoxicity also had more severe underlying disease / BMT which may have contributed to increased costs and LOS	2x baseline serum creatinine	-
Ullman et al. 36(4 European countries) - prospective	Conventiona I and lipid formulations of amphoterici n B - observation al retrospectiv e	Adults (mean age:49 y)	419	Suspected FI: 56% Possible, probable, proven: 44%	HSCT: 23% / SOT: 0.5%	Additional LOS in hospital 5.3 days extra overall	-	Adjusted for possible confounding	50% increase in baseline peak serum creatinine	Cox proportional hazards

Cagnoni et al. ³⁷ (US)	Conventiona I and Iiposomal amphoterici nliposomal amphoterici n B . Resource use and cost data collected prospectivel y	Adults? (Mean age: 41 y)	414	Febrile neutropenia with prior chemotherap y	HSCT: 51%	Additional LOS in hospital 7 days all patients / - 0.6 in BMT	US\$ 25,206 (all patients 1996 \$)	Patients who had nephrotoxicity also had more severe underlying disease / BMT which may have contributed to increased costs and LOS. Amph B had higher nephrotoxicity than LAMB (34% vs. 19%), however LOS between 2 groups was similar	2x baseline serum creatinine and > 1.2mg/dl	No adjustment
Bates et al. ³⁰ (US)	Amphoterici n B (retrospectiv e data collection)	Adults (mean age: 46 y)	707	Not provided	HSCT: 25% (31% in acute renal failure, 22% no acute renal failure)	Additional LOS after start of therapy 10 days (unadjusted), 8.2 days (adjusted) Extra LOS associated with nephrotoxicit y 2.5 days	\$44,557 (US\$, year ?) (unadjusted), \$29,823 (adjusted), \$8,947 (associated with nephrotoxicit y)	Multivariate analysis through linear models - can you adjust for non- normally distributed outcomes ? Authors state that residual confounding by indication and severity of illness may still be present despite adjusted analyses. LOS associated with nephrotoxicity given	Acute renal failure: 50% increase in baseline serum creatinine with a peak >= 2.0 mg/dl (severe >= 3.0 mg/dl)	Univariate and multivariate analyses

Gubbins et al. ³⁴ (US)	Amphoterici n B (retrospectiv e data collection)	Adults (mean: 51 y)	69	Empirical or prophylactic use, or documented infection	HSCT and multiple myeloma 100% (saline hydration: 60%)	Additional LOS in hospital 2 days, p=0.69 (no difference according to authors) LOS after amph B started 0 days (from median)	-	High-risk patients, all had HSCT and cancer - less prone to confounding by severity of illness	2x baseline serum creatinine	Study sample restricted to patients with high risk of nephrotoxicity , i.e., HSCT with cancer
Harbarth et al. ³⁸ (US)	Amphoterici n B (retrospectiv e data collection) year of treatment: 1990-1998	Adults (mean: 52 y)	494	Not provided	Leukemia, lymphoma or malignancy : 39%	Additional LOS after amphotericin B started 4 days (from median), NS	\$14,500 (1998 US\$) (unadjusted) - adjustments did not change statistical significance for cost ratio (values not provided)		2x baseline serum creatinine up to an absolute value >= 2.0 mg/dl	Multivariate analysis - Cox proportional hazard

BMT=bone marrow transplantation / FI-fungal infection / HSCT =hematopoietic stem cell transplantation / LOS=length of stay / SOT=solid organ transplant

REFERENCES

- 1. Institute of Health Economics Alberta Canada, Alberta Heritage Foundation for Medical Research. Health Technology Assessment on the Net: A guide to internet sources of information. June 2007 http://www.ihe.ca/documents/IHE_Report_Health_Technology_Assessment_on_the_Net_Jun_2007.pdf Last access: November 5th 2007. 2007.
- 2. Cesaro S, Toffolutti T, Messina C, et al. Safety and efficacy of caspofungin and liposomal amphotericin B, followed by voriconazole in young patients affected by refractory invasive mycosis. Eur J Haematol 2004;73(1):50-5.
- 3. Merlin E, Galambrun C, Ribaud P, et al. Efficacy and safety of caspofungin therapy in children with invasive fungal infections. Pediatr Infect Dis J 2006;25(12):1186-8.
- 4. Koo A, Sung L, Allen U, et al. Efficacy and Safety of Caspofungin for the Empiric Management of Fever in Neutropenic Children. Pediatr Infect Dis J 2007;26(9):854-6.
- 5. Walsh TJ, Teppler H, Donowitz GR, et al. Caspofungin versus liposomal amphotericin B for empirical antifungal therapy in patients with persistent fever and neutropenia. N Engl J Med 2004;351(14):1391-402.
- 6. Groll AH, Attabarschi A., Schuster FH., Herzog N., Grigull L. et al. Treatment with caspofungin in immunocompromised paediatric patients: a multicentre survey. Journal of Antimicrobial Chemotherapy 2006;57:527-35.
- 7. Cesaro S, Giacchino M, Locatelli F, et al. Safety and efficacy of a caspofungin-based combination therapy for treatment of proven or probable aspergillosis in pediatric hematological patients. BMC Infect Dis 2007;7:28.
- 8. Walsh TJ, Adamson PC, Seibel NL, et al. Pharmacokinetics, safety, and tolerability of caspofungin in children and adolescents. Antimicrob Agents Chemother 2005;49(11):4536-45.
- 9. Franklin JA, McCormick J, Flynn PM. Retrospective study of the safety of caspofungin in immunocompromised pediatric patients. Pediatr Infect Dis J 2003;22(8):747-9.
- 10. Zaoutis T. Prospective, multicenter study of caspofungin for treatment of documented fungal infections in pediatric patients.

Presented at the 45th Annual Meeting of the Infectious Diseases Society of America (IDSA) http://www.idsociety.org/WorkArea/showcontent.aspx?id=7926 - Last access: January 14th 2007 2007.

- 11. European Medicine Agencies. Cancidas Scientific Discussion. Cancidas-H-C-379-II-17 Extension of Indication to include Empirical therapy for presumed fungal infections. Procedure No. EMEA/H/C/379/II/17 http://www.emea.europa.eu/humandocs/PDFs/EPAR/cancidas/H-379-II-17.pdf (last access: March 12th 2008). 2004.
- 12. Ellis M, Frampton C, Joseph J, et al. An open study of the comparative efficacy and safety of caspofungin and liposomal amphotericin B in treating invasive fungal infections or febrile neutropenia in patients with haematological malignancy. J Med Microbiol 2006;55(Pt 10):1357-65.
- 13. Marr KA, Boeckh M, Carter RA, Kim HW, Corey L. Combination antifungal therapy for invasive aspergillosis. Clin Infect Dis 2004;39:797-802.

- 14. Marr KA, Hachem R, Papanicolaou G, et al. Retrospective study of the hepatic safety profile of patients concomitantly treated with caspofungin and cyclosporin A. Transpl Infect Dis 2004;6(3):110-6.
- 15. Cancidas (Caspofungin). Compendium of Pharmaceuticals and Specialties, online version (e-CPS) © Canadian Pharmacists Association, 2006
- 16. Sanz-Rodriguez C, Lopez-Duarte M, Jurado M, et al. Safety of the concomitant use of caspofungin and cyclosporin A in patients with invasive fungal infections. Bone Marrow Transplant 2004;34(1):13-20.
- 17. Saner F, Gensicke J, Rath PM, et al. Safety profile of concomitant use of caspofungin and cyclosporine or tacrolimus in liver transplant patients. Infection 2006;34(6):328-32.
- 18. Christopeit M, Eikam M, Behre G. Comedication of caspofungin acetate anc cyclosporine A after allogeneic haematopoietic stem cell transplantation leads to negligible hepatotoxicity. Mycoses 2008;51(Suppl. 1):19-24.
- 19. Glasmacher A, Cornely OA, Orlopp K, et al. Caspofungin treatment in severely ill, immunocompromised patients: a case-documentation study of 118 patients. J Antimicrob Chemother 2006;57(1):127-34.
- 20. Morrissey CO, Slavin MA., O'Reilly MA., Daffy JR., Seymour JF., Schwarer AP., Szer J. Caspofungin as salvage monotherapy for invasive aspergillosis in patients with haematological malignancies or following allogeneic stem cell transplantation: efficacy and concomitant cyclosporin A. Mycoses 2007;50(Suppl. 1):24-37.
- 21. Trenschel R, Ditschkowski M, Elmaagacli AH, et al. Caspofungin as second-line therapy for fever of unknown origin or invasive fungal infection following allogeneic stem cell transplantation. Bone Marrow Transplant 2005;35(6):583-6.
- 22. Falagas ME, Ntziora F, Betsi GI, Samonis G. Caspofungin for the treatment of fungal infections: a systematic review of randomized controlled trials. Int J Antimicrob Agents 2007;29(2):136-43.
- 23. Canadian, Health AfDaTi. Caspofungin acetate. Emerging Drug List 2001;17.
- 24. Institute for Clinical Effectiveness and Health Policy. Caspofungin usefullness in mycotic infections. Informe Tecnico Breve 2004;17:1-15.
- 25. Wingard JR, Leather HL, Wood CA, et al. Pharmacoeconomic analysis of caspofungin versus liposomal amphotericin B as empirical antifungal therapy for neutropenic fever. Am J Health Syst Pharm 2007;64(6):637-43.
- 26. Bruynesteyn K, Gant V, McKenzie C, et al. A cost-effectiveness analysis of caspofungin vs. liposomal amphotericin B for treatment of suspected fungal infections in the UK. Eur J Haematol 2007;78(6):532-9.
- 27. Kaskel P, Tuschy S, Wagner A, et al. Economic evaluation of caspofungin vs. liposomal amphotericin B for empirical therapy of suspected systemic fungal infection in the German hospital setting. Ann Hematol 2007;DOI 10.1007/s00277-007-0382-7.
- 28. Stam WB, Aversa F, Kumar RN, Jansen JP. Economic evaluation of caspofungin versus liposomal amphotericin B for empiric antifungal treatment in patients with neutropenic fever in Italy. Value in Health 2008;doi 10.1111/j.1524-4733.2008.00324.x.
- 29. Roma-Sanchez E, Poveda-Andres JL, Garcia-Pellicer J, Salavert-Lleti M, Jarque-Ramos I. Estudio coste-efetividad de la estrategia empirica antifungica en pacientes oncohematologicos. Farm Hosp 2008;32(1):7-17.

- 30. Bates DW, Su L, Yu DT, et al. Mortality and costs of acute renal failure associated with amphotericin B therapy. Clin Infect Dis 2001;32(5):686-93.
- 31. Harbarth S, Samore MH. Amphotericin-B-related nephrotoxicity has an economic impact on hospitals and health systems. Author reply. Clin Infect Dis 2003;37:1396-7.
- 32. Maertens J, Madero L, Reilly A, et al. A Randomized, double-blind, multicenter trial of caspofungin vs. liposomal amphotericin B for empirical therapy of persistently febrile neutropenic pediatric patients.

 Presented at the Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) 2007.
- 33. Study protocol: "Nephrotoxicity: Conventional versus Liposomal Amphotericin B in Children". .
- 34. Gubbins PO, Penzak SR, Polston S, McConnell SA, Anaissie E. Characterizing and predicting amphotericin B-associated nephrotoxicity in bone marrow or peripheral blood stem cell transplant recipients. Pharmacotherapy 2002;22(8):961-71.
- 35. Wingard JR, Kubilis P, Lee L, et al. Clinical significance of nephrotoxicity in patients treated with amphotericin B for suspected or proven aspergillosis. Clin Infect Dis 1999;29(6):1402-7.
- 36. Ullmann AJ, Sanz MA, Tramarin A, et al. Prospective study of amphotericin B formulations in immunocompromised patients in 4 European countries. Clin Infect Dis 2006;43(4):e29-38.
- 37. Cagnoni PJ, Walsh TJ, Prendergast MM, et al. Pharmacoeconomic analysis of liposomal amphotericin B versus conventional amphotericin B in the empirical treatment of persistently febrile neutropenic patients. J Clin Oncol 2000;18(12):2476-83.
- 38. Harbarth S, Burke JP, Lloyd JF, Evans RS, Pestotnik SL, Samore MH. Clinical and economic outcomes of conventional amphotericin B-associated nephrotoxicity. Clin Infect Dis 2002;35(12):e120-7.
- 39. Hospital for Sick Children Toronto. Management of Hypokalemia associated with conventional amphotericin B. Department of Pharmacy. Last accessed: November 6th 2007. 2007.
- 40. Walsh TJ, Gonzalez C, Chanock SJ, Pizzo PA. Invasive fungal infections in children: recent advances in diagnosis and treatment. Adv Pediatr Infect Dis 1996;11:187-290.
- 41. Cagatay AA, Cosan F, Karadeniz A, et al. The clinical and pharmacoeconomic analysis of invasive aspergillosis in adult patients with haematological diseases. Mycoses 2008;Published online 4-Mar-2008:doi: 10.1111/j.439-0507.2007.01483.x.
- 42. Girois SB, Chapuis F, Decullier E, Revol BGP. Adverse effects of antifungal therapies in invasive fungal infections: review and meta-analysis. Eur J Clin Microbiol Infect Dis 2005;24(2):119-30.