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Glioblastoma multiforme (GBM) is the most deadly brain tumor,
and currently lacks effective treatment options. Brain tumor-
initiating cells (BTICs) and orthotopic xenografts are widely used
in investigating GBM biology and new therapies for this aggres-
sive disease. However, the genomic characteristics and molecular
resemblance of these models to GBM tumors remain undeter-
mined. We used massively parallel sequencing technology to
decode the genomes and transcriptomes of BTICs and xenografts
and their matched tumors in order to delineate the potential
impacts of the distinct growth environments. Using data gener-
ated from whole-genome sequencing of 201 samples and RNA
sequencing of 118 samples, we show that BTICs and xenografts
resemble their parental tumor at the genomic level but differ at
the mRNA expression and epigenomic levels, likely due to the
different growth environment for each sample type. These
findings suggest that a comprehensive genomic understanding
of in vitro and in vivo GBM model systems is crucial for interpret-
ing data from drug screens, and can help control for biases
introduced by cell-culture conditions and the microenvironment
in mouse models. We also found that lack of MGMT expression in
pretreated GBM is linked to hypermutation, which in turn contrib-
utes to increased genomic heterogeneity and requires new strat-
egies for GBM treatment.
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Glioblastoma multiforme (GBM) is the most deadly form of
brain cancer, with almost all patients dying of the disease

within 2 y of initial diagnosis. Treatment regimens combining
surgical resection with radiotherapy and concurrent adjuvant
temozolomide (TMZ) chemotherapy have led to modest gains in
survival, with 2- and 5-y survival rates of 25 and 10%, respectively
(1). The main barriers to successful treatment include the in-
vasive nature and low proliferative activity of GBM that impede
complete surgical removal of the invasive cells while also pro-
moting resistance to chemotherapy and radiotherapy.
Cell lines and xenograft models are frequently used for in-

vestigating cancer biology and therapeutics. Several reports have
described GBM cell lines and xenograft models (2–5). In par-
ticular, the identification of brain tumor-initiating cells (BTICs)
more than a decade ago led to the hypothesis that a subpopulation
of treatment-resistant cells may possess “stem cell-like” properties

and spawn recurrences (6). By adapting neural stem cell tissue-
culture techniques (7), a library of BTICs was generated by cul-
turing patient-derived GBM tumor cells as spheres in neural stem
cell media. These BTICs mimic the phenotypic aspects of human
GBM when implanted orthotopically in mice and capture the ge-
netic diversity of GBM more faithfully than traditional immortal-
ized cell lines (2, 8). However, it is unclear how closely BTICs in
culture or grown orthotopically in mice resemble the genetic, epi-
genetic, and transcriptomic landscape of tumors from which they
were derived.
The Cancer Genome Atlas (TCGA) has generated a com-

prehensive catalog of molecular alterations and deregulated
signaling pathways in GBM patient samples (9–11). Such surveys
illustrate the power of systematic sequencing approaches to
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identify molecular genetic alterations of biological significance
and, in due course, candidate therapeutic targets. TCGA re-
source also provides an important resource against which to
compare data from other GBMs and materials derived from
them. Such a data resource and in-depth analysis are needed for
cell lines and xenografts that are heavily used in the study of
disease biology and treatment. Here, we report comprehensive
whole-genome, transcriptome, and methylome datasets derived
from matched GBM tumor, BTIC, and xenograft samples, com-
paring these with each other and GBM samples from TCGA. The
comprehensive molecular profiling of BTICs and xenografts pro-
vides insights into GBM biology and reveals how in vitro and in
vivo growth environments affect the genomes and transcriptomes
of these model systems. Our findings will help to interpret drug-
screen results from these models, refine future strategies for the
development of novel therapeutic approaches, and avoid biases
introduced by culture conditions.

Results
To investigate how the GBM genomic landscape is shaped
during the production of BTICs from human tumor tissues and
their subsequent growth in xenografts, we sequenced and ana-
lyzed the genomes of 201 samples, including 46 matched parent
tumor–BTIC pairs and 15 matched trios of tumor–BTIC–xenograft,
together with their matched blood samples (Table 1). In addi-
tion, we performed RNA sequencing on 108 samples, includ-
ing 37 pairs and 10 trios, to determine changes in gene expression.
To assess differences in DNA methylation, 35 pairs and 4 trios
were profiled using Illumina’s Infinium Human Methylation
450K array. In addition to newly diagnosed tumors, our analyses
also included posttreatment, recurrent GBM (GBM-R) cases
(including a secondary GBM sample) to provide insights into the
mechanisms of treatment resistance.

Conservation of Genomic Features among Parent Tumors, Matched
Cell Lines, and Xenografts. In all 3 types of samples, tumor, BTIC,
and xenograft, we generally observed conserved patterns of
driver events in GBM that were described previously, such as
PTENmutation, EGFR amplification and point mutation, as well
as homozygous loss of CDKN2A and CDKN2B (Fig. 1) (9, 10). In
particular, from the analysis of copy-number alterations (CNAs),
we found that the conserved pattern of CNAs among the 3 types
of samples was not limited to alterations known to be charac-
teristic of GBM, such as gains of chromosome 7 and losses of
chromosome 10, but across the whole genome (SI Appendix,
Fig. S1).
Using the whole-genome sequencing data, we also investigated

the mutation landscape of tumors, BTICs, and xenografts. As
our collection included both pre- and posttreatment tumor
samples, we observed 2 levels of mutation burden: 39 samples
showed an average of 3.9 somatic mutations per million bp in the
genome (range, 0.95 to 16.09), including pre- and posttreatment
samples. Additionally, 10 samples displayed a hypermutation
phenotype, exhibiting a much higher rate, with an average of
93 mutations per million bases (range, 41 to 140) (SI Appendix,
Fig. S2A). Hypermutation is a genomic feature found in many
posttreatment GBMs (12), and all hypermutated samples in our
collection were derived from recurrent GBM treated with TMZ
in the primary setting; these hypermutated samples have muta-
tions in mismatch repair (MMR) genes (SI Appendix, Table S1).
However, not all TMZ-treated recurrent GBM demonstrated a
hypermutation phenotype, suggesting alternative mechanisms of
resistance that are discussed later.
In contrast to CNAs, mutational patterns showed a larger di-

versity between matched pairs, especially in hypermutated sam-
ples. The proportion of shared single-nucleotide variants (SNVs)
between tumors and matched BTICs varied across samples,
ranging from 12 to 64% in samples without hypermutation, with

a median of 34% (SI Appendix, Figs. S2B and S3). A generally
lower percentage of mutations was shared between hyper-
mutated tumors and their matched BTICs (0.7 to 52%, median
21%; SI Appendix, Fig. S2B); the level of SNV overlap appeared
to be related to the timing of mutations in MMR genes, espe-
cially MSH6. In samples without shared MMR gene mutations
(mutations acquired independently after diverging from an an-
cestral clone), only ∼0.7% of mutations were common between
pairs. In samples that had 1 shared MMR mutation, ∼10% of
mutations were shared between the matched tumor and BTIC,
and in pairs with 2 shared MMR mutations >20% mutations
were in common (SI Appendix, Fig. S2C).
Using the 15 trios of tumor, BTIC, and xenograft samples, we

further investigated the genomic similarities and differences
among tumor, BTIC, and xenograft samples. Our analysis
showed that in most trios, the majority of mutations are shared
among all 3 sample types from the same patient (34 to 80%,
median 51%; SI Appendix, Fig. S2D). As expected, the com-
monly mutated genes are enriched in glioma-related pathways,
such as the PI3K pathway, MAPK pathway, and p53 signaling,
suggesting that cancer-driving mutations are well-conserved in
the in vitro and in vivo models.

Disparate Genomic Features Revealed in Comparisons among Tumors,
Cell Lines, and Xenografts. Comparison between tumors and their
matched BTICs revealed aberrations that were private to each
sample type. BTIC-specific mutations ranged from 8 to 59% of
all mutations in a given pair (SI Appendix, Fig. S3). Few genes
were mutated privately in more than 2 BTIC lines. There were
∼700 genes that were uniquely mutated in only 1 of the BTIC
lines. These did not reveal significant enrichment in any partic-
ular biological pathway or process. This may indicate that the
majority of new aberrations gained in the cell lines were likely
due to tumor heterogeneity or random and ongoing intrinsic
mutational processes associated with proliferation in vitro.
We also identified variants in the tumors but not in the

matched BTICs. Out of the total mutations in each pair, ∼2 to
60% of mutations are found in tumors only. This is expected,
since BTICs are derived from only a few cells of the original
tumor and therefore tumor-specific mutations may reflect tumor
heterogeneity. Alternately, selective pressures of in vitro growth
conditions may lead to preferential loss of some clones, espe-
cially when the same observation was made in several tumor–
BTIC pairs. Among such variants, of particular interest were
PDGFRA amplification and PDGFRA p. P343L/T mutations. In
2 patients (PT-LS4891 and PT-RL5404), PDGFRA was within
high-level focal amplifications in the tumor sample, and most of
the amplified copies had the same mutation in proline 343
(35 out of 40 copies in PT-LS4891, and 71 out of 77 copies in PT-
RL5404). In contrast, neither the amplification nor the mutation
was found in BTICs derived from these 2 tumor samples, sug-
gesting a different selection preference for clones with PDGFRA
aberrations in BTICs.
Another difference between tumors and BTICs was observed

in 2 samples with the IDH1 mutation. BT-142 from patient PT-
EV3071 and BT-92 from patient PT-AR5365 each had an IDH1
R132H mutation in the tumor, but the BT-142 cell line lost the
wild-type allele while the BT-92 cell line lost the mutated allele,
suggesting that this allele has to be homozygous in order to es-
tablish cell lines. This finding was confirmed with more samples
and these results have been previously published (13).
Among the 15 trios of tumor, BTIC, and xenograft samples,

private mutations in each sample type were sparse: 0 to 4% in
tumors, 0 to 27% in BTICs, and 6 to 37% in xenografts. We did
not observe any functional enrichment of statistical significance.
However, among mutations private to BTICs, several were found in
genes involved in cell-matrix interaction including cell-matrix adhe-
sion, cell-substrate adhesion, and extracellular matrix organization,
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Table 1. Matched tumor–BTIC–xenograft blood samples with whole-genome sequencing, transcriptome sequencing, and methylation
array data

Samples and sequencing data Clinical data

Patient ID
BTIC
ID Tumor* BTIC Xenograft Blood

Tumor MGMT
methylation status†

New or
recurrent‡ Treatment§ Age, y Gender

PT-VO7089 BT-100 W, T, M W, T, M W U N No treatment 63 M
PT-AB0029 BT-106 W, T W W N RT alone 83 M
PT-GC1519 BT-108 W, T W, T W N RT+TMZ + 2 cycles TMZ only 46 M
PT-AB6372 BT-119 W, T, M W, T, M W M R RT+TMZ, TMZ 69 F
PT-HN6692 BT-126 W, M W, T, M W U Unknown Unknown 67 M
PT-BM772 BT-127 W, M W, T, M W U N RT+TMZ, TMZ 55 M
PT-BK0248 BT-134 W W, T W W N CRT 50 F
PT-RL7940 BT-140 W, T, M W, T, M W U N RT+TMZ, TMZ 63 M
PT-EV3071 BT-142 W, T W, T W, T W N RT+TMZ, TMZ 38 M
PT-MB9777 BT-143 W, T, M W, T, M W, T, M W M R RT+TMZ, TMZ 39 F
PT-MB9777 BT-143-Y W, T W, T W W R RT+TMZ, TMZ 39 F
PT-MB9777 BT-143-Z W W, T W R RT+TMZ, TMZ 39 F
PT-DS9789 BT-147 W, T, M W, T, M W, T, M W U R RT+TMZ, TMZ 55 M
PT-MD9088 BT-156 W, T, M W, T, M W U R RT+TMZ, TMZ 51 M
PT-SK0976 BT-161 W, T, M W, T, M W W M N RT+TMZ+placebo or bevacizumab

followed by TMZ
55 F

PT-JW6420 BT-166 W, T W, T W N RT+TMZ, TMZ 69 M
PT-LR9369 BT-167 W, T, M W, T, M W U R RT+TMZ, TMZ 63 M
PT-RD1291 BT-169 W, T W, T W N RT+TMZ, TMZ 41 M
PT-KM5291 BT-172 W, T, M W, T, M W W U N RT+TMZ, TMZ 51 M
PT-JP2405 BT-181 W, T, M W, T, M W M R RT and TMZ before diagnosis of GBM 47 M
PT-SJ5453 BT-191 W, T, M W, T, M W, T U N RT+TMZ 44 F
PT-AK7565 BT-194 W, T, M W, T, M W M N CRT (Stupp), then RESCUE after

progression/recurrence
59 M

PT-LS4891 BT-198 W, T, M W, T, M W W U N No treatment 52 F
PT-PV2594 BT-206 W, T, M W, T, M W, T M N RT+TMZ, TMZ 68 M
PT-PV2594 BT-206-R W, T M N RT+TMZ, TMZ 68 M
PT-AH1410 BT-208 W, M W, T, M W M N RT+TMZ, TMZ 69 M
PT-SS3647 BT-220 W, T, M W, T, M U N RT alone 84 M
PT-GJ3716 BT-238-X W W, T W W N RT+TMZ 61 M
PT-GJ3716 BT-238-Z W, T W W N RT+TMZ 61 M
PT-JE6375 BT-241 W, T W, T T W N RT followed by TMZ 79 F
PT-CA2271 BT-245 W, T, M W, T, M W, T W U N RT followed by TMZ 70 M
PT-GR2309 BT-246 W, M W, T, M W M N CRT (Stupp) 60 F
PT-CM1209 BT-248-XY W, T W, T W, T W R RT+TMZ, TMZ 55 F
PT-CM1209 BT-248-Z W, T W, T W W R RT+TMZ, TMZ 55 F
PT-HS9105 BT-266 W W W R CRT (Stupp), then RESCUE after

progression/recurrence
54 F

PT-TM5196 BT-280 W, T, M W, T, M W U R RT alone (CEC1 trial), then RESCUE
after recurrence

35 M

PT-WP9124 BT-284 W, T, M W, T, M W M R CRT (Stupp), then bevacizumab after
recurrence

50 M

PT-GB9483 BT-287 W W W R CRT (Stupp) 52 M
PT-PD6881 BT-41 W, T, M W, T, M W U R RT+TMZ 49 M
PT-DF5919 BT-53 W, T, M W, T, M M W M N Unknown 59 M
PT-JB1730 BT-63 W, T W, T W N TMZ followed by TMZ+RAD001C

(clinical trial)
60 F

PT-FB6711 BT-67 W, T, M W, T, M W M N RT+TMZ 44 M
PT-HO0394 BT-69 W, M W, T, M W, T W U N No treatment 51 M
PT-RW9277 BT-73 W, T, M W, T, M W, T, M W U Unknown Unknown 52 M
PT-RL5404 BT-75 W, T, M W, T, M W U N RT alone 74 M
PT-AL4257 BT-84 W, T, M W, T, M W M N Unknown Unknown M
PT-GB9186 BT-85 W, T, M W, T, M W M N RT followed by TMZ 74 M
PT-SO0258 BT-89 W, T, M W, T, M W M N RT followed by TMZ 60 F
PT-AR5365 BT-92 W, T W, T W R RT+TMZ, TMZ 23 M
PT-LC3356 BT-94 W, T, M W, T, M W, T W M N RT+TMZ 60 F

*M, methylation profiling; T, transcriptome sequencing by RNA-seq; W, whole-genome sequencing.
†M, methylated; U, unmethylated.
‡N, newly diagnosed; R, recurrent after treatment.
§CRT, concurrent chemoradiotherapy; RESCUE, a phase II TMZ trial; RT, radiation therapy; RT+TMZ, concurrent radiation therapy and temozolomide; Stupp,
the Stupp protocol for glioblastoma; RT+TMZ, TMZ, concurrent radiation therapy and temozolomide followed by temozolomide.

19100 | www.pnas.org/cgi/doi/10.1073/pnas.1813495116 Shen et al.

https://www.pnas.org/cgi/doi/10.1073/pnas.1813495116


A

B

Fig. 1. Distribution of somatic aberrations in genes found significantly altered in previous GBM studies. Aberration types are encoded by different colors.
Letters are used when the aberration is not shared in a pair or trio. C, private in a BTIC; D, private in a tumor and xenograft in a trio; F, private in a BTIC and
xenograft in a trio; P, private in a tumor and BTIC in a trio; T, private in a tumor; X, private in a xenograft. MGMT and EGFR vIII status tiles are split when a
tumor (Upper) and BTIC (Lower) differ. Loss of tumor suppresser and gain of oncogene are well-conserved in pairs and trios. The private aberrations often
have low functional impact, such as shallow copy changes or a variant of unknown significance, or passenger mutations in hypermutated samples. (A)
Aberrations in paired tumor and BTIC samples. (B) Aberrations in trios of tumor–BTIC–xenograft samples.
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such as ITGA2, ITGA8, and NID1. Private mutations observed in
xenografts are found in several genes involved in brain functions,
including ciliary or flagellar motility, sensory organ development, and
regulation of synaptic transmission. Larger sample sizes are needed
to determine if these private mutations are a consequence of ad-
aptation to the distinct growth environments of each model system.

Transcriptome and Methylome Reveal Differences among Tumor,
BTIC, and Xenograft Samples. We generated and compared
RNA-sequencing data from 108 samples, including 37 matched
tumor–BTIC pairs and 10 matched tumor–BTIC–xenograft trios,
to observe how gene expression differs between tumors and the
in vitro and in vivo model systems. From principal-component
analysis (PCA) of the expression data, we found the clear sep-
aration of tumor samples from BTIC and xenograft samples
along PC1, while BTIC and xenograft clusters were completely
overlapping on PC1 and partially overlapping along PC2 (Fig. 2).
A heuristic clustering analysis also showed that samples from the
same patient did not group together. Thus, higher similarity at
the expression level was observed in samples of the same type
(tumor, BTIC, xenograft) rather than those of samples from the
same patient.
Similar differences were observed between GBM tumors and

matched BTIC samples when DNA methylation (DNAm) pro-
files were interrogated across ∼420,000 CpG sites in the genome.
Based on unsupervised hierarchical clustering of DNAm profiles,
GBM tumors clustered distinctly away from BTIC samples, in-
dicating global differences in DNAm signatures between the
paired tissue sources (Fig. 3A). In addition, no discernible clus-
tering in DNAm profiles was observed based on sample subtype
classification (either classical, mesenchymal, or proneural) (Fig.
3A). These results were corroborated by PCA, which showed that
tissue source and subtype were associated with PC1, comprising
23.7% of the variance in DNAm (Fig. 3B). Moreover, PC1 was
largely driven by differences in tissue source (i.e., tumor versus

BTIC) followed by subtype class (Fig. 3B), similar to what was
observed in the clustering results of RNA expression data.
As well as transcriptionally defined subtypes, we also calcu-

lated subgroups based on methylation patterns as described
previously (14). All 33 tumor methylation samples with suitable
sample quality were classified as GBM, with 14 classified as RTK
I subtype, 10 as RTK II, and 9 as mesenchymal. Compared with
tumors, cell lines in general have lower scores, which may result
from lack of stromal cells. These methylation-defined subtypes
are not entirely equivalent to the proneural, classical, and mes-
enchymal subtypes but show overlap as described previously (15)
(SI Appendix, Table S2).

Differential Expression Analysis across Matched Pairs and Trios. We
further analyzed differentially expressed genes (DEGs) across
tumor, BTIC, and xenograft samples in order to determine which
genes and biological pathways had altered expression in the
comparison between parent tumor samples and tumor-derived
model systems. We found 3,172 genes up-regulated and 321
down-regulated in tumor samples relative to BTIC samples,
while 3,032 were up-regulated and 1,158 were down-regulated in
tumor samples relative to xenograft samples (Datasets S1 and
S2). Many of the significantly enriched biological process gene
ontology terms for the DEGs that separate tumor from either
BTIC or xenograft samples are associated with the immune re-
sponse, and 8 of the top 10 terms are shared between the 2
comparisons (Fig. 4 and Dataset S3). In both comparisons of
tumor versus tumor-derived model, tumor samples form immune-
high and immune-low clusters, supporting the notion that immune
microenvironment is a major contributor to the observed expres-
sion patterns (SI Appendix, Fig. S4). The immune-high clusters have
an overrepresentation of mesenchymal vs. nonmesenchymal sub-
type samples (P = 0.0034 and P = 0.0010, Fisher’s exact test), and
the immune-low clusters are overrepresented with proneural sam-
ples (P = 0.0021 and P = 0.0157, Fisher’s exact test). In addition to

Fig. 2. Principal-component analysis plot of tumors, BTICs, and xenografts based on RNA expression. Color indicates sample type, while shape represents
subtype. Samples show higher similarity within that same sample type, suggesting the growth condition has a higher impact on the gene expression than the
individual genetic makeup.
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the immune association, we find many DEGs with increased ex-
pression in tumor relative to BTIC or xenograft samples that belong
to gene families associated with oncogenic signaling pathways, such
as colony-stimulating factors (CSFs) and CSF receptors, fibroblast
growth factors (FGFs) and FGF receptors, phosphatidylinositol 3-
kinases, and vascular endothelial growth factor receptors (Datasets
S1 and S2). This has implications for future drug-targeting studies
that utilize these model systems, as targeting these components or
their pathways in an in vitro or in vivo model is less likely to provide
a response representative of the original tumor environment.
In contrast to the imbalance of up-regulated DEGs in the

tumor versus BTIC and xenograft sample comparisons, a similar
number of up- and down-regulated DEGs were found when
comparing the in vitro and in vivo models, with 1,491 up-
regulated and 1,828 down-regulated in BTIC samples relative to
xenograft samples (Dataset S4). The DEGs up-regulated in
BTIC samples were significantly enriched for cell adhesion, ex-
tracellular matrix organization, and the collagen catabolic pro-
cess, in line with their growth environment. Interestingly, the
DEGs most strongly up-regulated in xenograft samples were not
significantly enriched for any biological processes, suggesting
that fewer pathway-specific expression differences exist between
tumor and xenograft samples than either sample type compared
with BTICs. Overall, it appears that immune-related gene ex-
pression is a major contributor to the expression differences

between tumors and tumor-derived models. Such differences
may be contributed by stromal cells or other noncancer cell types
in the tumor sample, which are absent in the BTIC and xenograft
samples with mouse sequences removed. Additionally, this may
indicate that substantial differences in drug-target genes can
occur within in vitro and in vivo model systems depending on the
growth environment, and it is important to know which genes
are sensitive to such environmental changes and which are more
tolerant.
To identify clinically relevant expression signatures well-

modeled in vitro and in vivo relative to parent tumors, we per-
formed enrichment analysis of a set of genes with high expression
that are not differentially expressed between sample types. Sev-
eral KEGG pathways, including glioma, cell cycle, Erbb signal-
ing, mTOR signaling, and pathways in cancer, were found to be
significantly enriched, and include genes frequently altered in
GBM such as EGFR, PTEN, CDK6, RB1, and TP53. Genes
highly expressed in vivo and in vitro involved in GBM-related
pathways provide a reasonable starting point for drug screens.
Of particular interest is the expression and methylation status

of MGMT in matched tumors, BTICs, and xenografts, as this
gene is an important marker for TMZ response in the clinic. Our
data suggest that the MGMT expression level is stable across the
matched samples (SI Appendix, Table S3). Methylation array
data showed that 27 out of 35 pairs had the same MGMT status
in tumors and BTICs, while the remaining 8 pairs had MGMT
unmethylated in tumors and methylated in BTICs (Fig. 1). Six of
the 8 pairs had matched genomic and transcriptomic data to
infer tumor content and MGMT expression levels. Tumor con-
tent in 3 of these 6 pairs was low (<30% in the matched tumors
of BT-69, BT-126, and BT-238), so the status change may come
from enrichment of tumor cells in the BTIC samples. Two BTICs
(BT-147 and BT-245) still showed a low level of MGMT ex-
pression, which suggested that the sample may contain a mixed
population of methylated and unmethylated cells.

Microenvironment of Tumor Samples Contributes to the Differential
Expression across Models and Subtypes. The DEGs most strongly
up-regulated in tumor samples appear to be associated with tu-
mor microenvironment. To evaluate how the growth environ-
ment affects the differential expression between tumors and their
in vitro and in vivo models, we used Cibersort (16) and xCell
(17), 2 methods of determining cell composition via different
algorithms. The Cibersort absolute score was significantly higher
for tumor samples than either BTIC (P < 2.2e-16) or xenograft
(P = 5.6e-8) samples, reflecting the presence of nontumor cells in
the original tumor samples (SI Appendix, Fig. S5). A similar
pattern was found for the xCell microenvironment score, which is
the sum of stromal and immune cell scores, with higher scores in
tumor samples than BTIC (P = 8.5e-14) and xenograft (P = 1.1e-3;
nonhuman sequences were removed) samples (SI Appendix,
Fig. S5). As expected, both methods found significantly higher
nonmalignant cell-type association scores in tumor samples,
which may partly contribute to the differential expression among
tumors and the in vitro and in vivo models.
We also observed differences in nonmalignant cells among

tumor subtypes. Our collection of tumor samples included 3
GBM subtypes based on the expression of the subtype signature
genes defined in previous studies (11). We found that 18 out of
the 44 tumor samples (41%) displayed features of the classical
subtype, 12 (25%) were classified as proneural, and another 14
(32%) were classified as mesenchymal. Both Cibersort and xCell
results showed that tumor samples classified as mesenchymal
contained a larger variety of cell types (Fig. 5). Specifically, we
found a significant positive association between several immune-
suppressing cell types and the mesenchymal subtype (SI Appen-
dix, Figs. S6 and S7). Of particular note is the higher proportion
of M2 macrophages in mesenchymal tumors relative to classical

A

B

Fig. 3. Global differences in DNA methylation profiles between BTICs and
matched GBM tumors. (A) Heatmap of sample-to-sample correlations of
global DNA methylation profiles from matched GBM tumors and BTICs
shows that samples largely cluster by tissue source. There was no apparent
clustering by sample subtype. (B) Scatterplot of PC1 versus PC2 scores shows
that the first 2 PCs are largely associated with tissue source (BTIC vs. GBM
tumor) followed by sample subtype classification.
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and proneural tumors. Monocyte, fibroblast, and dendritic cell
enrichment values are also higher in mesenchymal samples than
nonmesenchymal subtype samples (SI Appendix, Fig. S7B).
Overall, our result suggested that GBM transcriptional subtype is
associated with immune microenvironment, especially in the
mesenchymal subtype.

Integrated Genomic and Transcriptomic Analysis Reveals Two Mutually
Exclusive Mechanisms of TMZ Resistance. As observed before, many
recurrent GBM tumors derived after TMZ treatment of the pri-
mary tumor showed a hypermutated phenotype, likely caused by
mutation in MMR genes and therefore MMR deficiency (12).
This is a known mechanism of TMZ resistance. However, not
all posttreatment samples were hypermutated. In our collec-
tion, only 9 out of the 14 GBM-R samples showed a hyper-
mutated phenotype and had mutations in MMR genes (Fig. 6).
Another 5 GBM-R samples showed a normal mutational load,
without loss-of-function mutation in MMR genes or TMZ-
related mutation signature. Therefore, we examined the ge-
nome and transcriptome data of these posttreated samples to
determine an alternative mechanism of resistance. One major
difference between the 2 groups was the expression of the
MGMT gene. All recurrent samples without hypermutation

showed MGMT expression >1 RPKM (reads per kilobase of
transcript per million mapped reads), while MGMT expression
was not detected or at a very low level (<1 RPKM) in recurrent
samples with hypermutation. This observation led to the hy-
pothesis that MMR deficiency and MGMT expression are 2
mutually exclusive mechanisms of TMZ resistance.
We tested this hypothesis of the exclusive relationship between

MGMT expression and MMR deficiency in BTICs and xeno-
grafts from 2 newly diagnosed GBM samples, BT-206 and BT-73.
BTICs from these pretreatment samples showed sensitivity to
TMZ, and were implanted into mouse brains to establish xeno-
grafts. Both mice were treated with TMZ, and developed TMZ
resistance. Cell lines were then explanted from these xenografts
(BT-206-R and BT-73-R), sequenced, and compared with the
original TMZ-sensitive lines. Both TMZ-sensitive BTICs (pre-
treatment) had no somatic mutation in the MMR gene and no
detectable MGMT expression. After TMZ treatment, 1 of the
TMZ-resistant cell lines, BT-206-R, acquired a mutation in
MSH6 (p.T1219I) and displayed a hypermutation phenotype
while MGMT expression remained undetectable. The other cell
line, BT-73-R, did not have hypermutation or mutation in any
MMR genes, but displayed a significantly increased level of
MGMT expression (RPKM values from 0 in the pretreatment

A
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D

Fig. 4. Gene ontology biological process terms enriched in the top 10% of DEGs up-regulated in each sample type relative to one another. Terms were
ranked by false discovery rate (FDR) and the top 10 are shown for each comparison. The vertical black line represents the threshold for a significant P-value
cutoff (FDR < 0.05). (A) DEGs up-regulated in tumors relative to BTICs. (B) DEGs up-regulated in tumors relative to xenografts. (C) DEGs up-regulated in BTICs
relative to xenografts. (D) DEGs up-regulated in xenografts relative to BTICs. (E) DEGs up-regulated in BTICs relative to tumors. A plot for DEGs up-regulated
in xenografts relative to tumors is absent, as the DEG set from this comparison produced no enriched terms.
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sample to 5.5 in the posttreatment sample, which is the highest
level among all of the sequenced samples in this collection). Such
MGMT expression change was also observed at the protein level
(18). Thus, the 2 experiments showed each of the mutually ex-
clusive mechanisms of resistance to TMZ treatment.

Current Treatment Regimen Potentially Causes a Higher Level of
Heterogeneity. As mentioned above, our posttreatment samples
showed higher mutational divergence between tumors and their
matched cell lines, suggesting higher levels of heterogeneity in
posttreatment GBM. To further investigate the increased treatment-
associated heterogeneity, we collected and sequenced multiple
spatially separated samples from posttreatment tumors from 2
patients, PT-MB9777 and PT-CM1209. BTICs were also gener-
ated from at least 2 regions of the tumor. In addition, a BTIC
from the pretreatment tumor of PT-CM1209 was included in
this analysis.
Patient PT-MB9777 (BT-143) presented with recurrent glio-

blastoma after treatment with TMZ and concurrent radiation
therapy followed by adjuvant TMZ. Four tumor sections were

taken from distinct regions of the debulked recurrent tumor.
Sequencing data showed that each section had many private
SNVs, ranging from ∼2,000 to 5,000, while only 61 mutations
were shared among all 4 sections (<0.4% of total mutations from
all sections combined; SI Appendix, Fig. S8A). These 61 core
mutations may derive from the original founding clone, and in-
clude PIK3CA p.Q546H, which may be the initial driver muta-
tion. All 4 sections showed hypermutation phenotypes and
strong TMZ mutation signatures, suggesting that the high mu-
tation burden resulted from TMZ-induced mutagenesis. In-
terestingly, each of the 4 sections contained 2 distinct MSH6
mutations, and there was no sharedMSH6mutation between any
pair of sections, suggesting that these MSH6 mutations each
arose independently from distinct clones. All these MSH6 mu-
tations are G>A or C>T, consistent with the pattern of TMZ-
introduced mutations. Some of these mutations have also been
reported in other cancers, such as p.T1219I, p.D575Y, and
p.T757I, and likely cause MSH6 loss of function. These obser-
vations indicate that the exposure to TMZ led to MSH6 muta-
tions rapidly arising in different cells, exemplifying how an often-
used anticancer DNA-damaging agent can generate mutations
leading to resistance.
Patient PT-CM1209 (BT-248) had 2 sections taken from a

posttreatment tumor, and a BTIC derived from a pretreatment
tumor. BTICs derived from each section of the posttreatment
tumor were also sequenced. Comparison among the genomes of
the 5 samples showed that each of the posttreatment samples
accumulated thousands of mutations, but only 41 of them are
shared with the pretreatment sample (SI Appendix, Fig. S8B).
Among the shared ones are a PTEN homozygous p.R130*
nonsense mutation and TP53 p.R273C missense mutation, which
were likely present as initial drivers. The 2 posttreatment sam-
ples and their derived BTICs shared 1,159 mutations (including 2
MSH6 mutations: p.G864E and p.E1193L). As described earlier,
the shared MSH6 mutations may explain the higher level of
overlap among the sections.
Comparison between pre- and posttreatment samples showed

48 mutations in the pretreatment samples that are absent in the
posttreatment ones, including TP53 p.V157fs and JAK1 p.R219*.
The loss of a TP53 mutation in a recurrent tumor was also ob-
served in another study, in which 2 out of 7 cases seem to have
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Fig. 5. Cibersort cell fractions (A) and xCell enrichment scores (B) across
multiple cell types with classical, mesenchymal, and proneural subtypes
shown as red, green, and blue boxes and points, respectively. Only selected
cell types of interest and with a median value greater than 0.001 from xCell
are shown in B; for all cell types, see SI Appendix, Fig. S7. Two outlier values
were excluded from B.

Fig. 6. MGMT expression and MMR deficiency as 2 mutually exclusive
mechanisms of TMZ resistance. MGMT expression levels are indicated by
RPKM value, and mutation load is shown by the number of somatic muta-
tions per megabase from posttreatment samples. Samples with >20 mutations
per Mb have a very low level ofMGMT RNA expression (<1 RPKM), and they all
contain a somatic MSH loss-of-function mutation and have a hypermutation
phenotype. Samples with MGMT expression over 1 RPKM have a low mutation
load (<20 mutations per Mb).
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lost TP53 mutations in the recurrent tumor (19). In contrast,
another TP53 mutation, R273C, is still present in both pre- and
posttreatment samples. R273C is described as oncomorphic, by
increasing expression of activated progrowth pathways including
phosphorylation of EGFR, Her2, and retinoblastoma protein
(20). The switch of function of TP53 due to R273C mutation may
confer a growth advantage and lead to retention of the variant in
different clones.

Discussion
To investigate how faithfully GBM cell lines and xenografts
capture the molecular features of their parental tumors, we
compared the genomic and transcriptomic features of matched
tumor, BTIC, and xenograft samples. Multiple genome features
are well-conserved across the 3 types of samples, including so-
matic driver mutations and genome-wide CNAs.
As expected, differences are also observed at the genome

level. Most of the nonconserved mutations are from genes
without known significance to cancer, and are not shared in
multiple samples, suggesting they are likely from intratumor
heterogeneity. Yet, in rare cases, a difference in mutations from
key GBM genes was also observed, as the PDGFRA amplifica-
tion and mutation described above. The PDGFRA proline
343 mutation together with high-level amplification may provide
a growth advantage to tumors in the presence of PDGF-family
mitogens. Such an advantage is likely not maintained within the
BTIC culture conditions that lack PDGF in the media. The loss
of amplification of PDGFRA proline 343 in BTICs suggests that
in cell-culture conditions lacking PDGF, they may be selected in
favor of cells expressing growth factor receptors that respond to
those factors present in the neural stem cell growth medium.
Unlike genomic changes that take generations to accumulate,

gene expression has the potential to more easily and quickly
adapt to changes in the environment. Therefore, more transcriptome-
level changes are expected than at the genome level. Such differ-
ences are well-captured by our analysis of cell-type composition.
We used Cibersort and xCell to assess the association of GBM
tumor subtype with immune cell enrichment and microenviron-
ment. Cibersort results show that M0 and M2 macrophages rep-
resent the dominant immune cell types in our 44 tumor samples,
with CD4 memory resting T cells being the next-largest fraction
(Fig. 5A and SI Appendix, Fig. S7A). Since xCell has a much
broader set of cell-type signatures, these results showed enrichment
of several cell types other than macrophages. These include den-
dritic cell (DC) types, most notably immature DCs, fibroblasts,
mesenchymal stem cells, endothelial cells, neurons, and smooth
muscle cells, among others (Fig. 5B and SI Appendix, Fig. S7B).
The mesenchymal subtype of GBM is associated with higher

cellular heterogeneity and shorter median survival than other
expression subtypes (21). This GBM subtype has also been
shown to be enriched for macrophage M1 and M2 polarized cells
and neutrophils, while having a reduced NK cell signature (21).
M2 macrophages are known to play an immunosuppressive role
by inhibiting phagocytosis and T cell proliferation (22), and this
immune inactivation may play a part in the shorter median
survival seen in mesenchymal GBM. Monocyte, fibroblast, and
dendritic cell enrichment values are also higher in mesenchymal
than nonmesenchymal subtype samples (SI Appendix, Fig. S7B).
Cancer-associated fibroblasts have been shown to play a role in
the growth and migration of glioma cells (23), while dendritic
cells are typically associated with coordination and activation of
an immune response. It is possible that the monocyte signature is
enriched due to the presence of myeloid-derived suppressor cells
(MDSCs), as they are derived from monocytes and there is no
specific signature for MDSCs in either Cibersort or xCell. This is
supported by the significantly higher expression of the MDSC
markers CD33 and S100A9 in mesenchymal subtype samples
relative to nonmesenchymal samples (P = 0.0028 and P = 0.021).

MDSCs have strong immunosuppressive activity through in-
hibition of CD8+ T cells and increasing production of tumor-
specific regulatory T cells (24). We also find differences in
immune-promoting cells. There was an elevated Th1 cell signa-
ture in classical and proneural tumors compared with mesen-
chymal tumors (SI Appendix, Fig. S7B). Th1 cells are thought to
be tumor-suppressing by playing a role in activating cytotoxic
cells (25). The effect of the immune microenvironment on gli-
oma progression has been known for some time and has impli-
cations for treatment improvement and survival (26–31), and
therefore the use of expression-based cell deconvolution and
enrichment analyses of the tumor microenvironment may help
to reveal novel pathways for targeted treatment via immune
modulation.
Whole-genome and RNA sequencing of both pre- and post-

treatment samples in our collection enabled us to compare their
genomes and transcriptomes and infer potential mechanisms of
treatment resistance. From our data, we hypothesize that MMR
deficiency and MGMT expression are 2 mutually exclusive
mechanisms of TMZ resistance. Conceptually, this can be
explained by the hypothetical mechanism of how MGMT ex-
pression repairs TMZ-induced damage. MGMT encodes
O6-alkylguanine DNA alkyltransferase that can remove the dam-
age caused by TMZ, and therefore the tumor cells are not under
the selection pressure of accumulated mutations. When MGMT ex-
pression is absent, C>T (or G>A) mutations introduced by TMZ
accumulate in the genome. When these mutations occur in
MMR genes causing a loss of function, clones deficient in MMR
cannot trigger apoptosis, leading to accumulation of cells that
survive with higher mutation loads. This phenomenon has been
alluded to in previous literature (32, 33), but we now demon-
strate a clear mutually exclusive relationship between MGMT
expression and MMR deficiency.
It is well-established that GBM displays high levels of inter-

and intratumoral heterogeneity and several studies have revealed
spatial heterogeneity in multiregional biopsies (34, 35). In post-
treatment tumors, TMZ may induce hypermutation, which can
lead to potentially new mutations that drive tumor progression.
Indeed, previous studies have demonstrated that specific alter-
ations and evolutionary patterns are associated with treatment
(36), and therefore increase heterogeneity and challenge the
targeted posttreatment of GBM. A study using 127 GBM sam-
ples showed that genomic characterization of spatial and tem-
poral heterogeneity in multiple sections of GBM can inform
targeted treatment (37), yet clinically it could be challenging to
administer multiple drugs simultaneously. Although hyper-
mutation can impose treatment challenges, it has been linked to
positive outcomes in immune checkpoint inhibitor treatment
(38), and several clinical trials have been initiated in GBM pa-
tients (39). A comprehensive study of hypermutation in human
cancers showed hypermutation as a consequence of treatment by
chemotherapies such as alkylators, as commonly observed in
GBM treated with TMZ (40). However, we show here that not
all tumors developing resistance to TMZ become hypermutated.
Understanding whether TMZ induces hypermutation in an in-
dividual patient and whether hypermutation creates a vulnera-
bility to immune therapy may shed light on this promising new
type of treatment.

Conclusion
Through genomic characterization and comparison of GBM
tumors, cell lines, and xenografts, we found that genomic aber-
rations are well-conserved across matched tumors, cell lines, and
xenografts. In contrast, gene expression and methylation showed
higher levels of divergence, likely due to the different in vivo and
in vitro growth environments among sample types. These find-
ings suggest that an understanding of genomic information is
crucial to the interpretation of drug-test results from in vitro and
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in vivo models, as well as the understanding of drug resistance
observed in current treatment. Also, this knowledge can guide
the design of drug-screening experiments to avoid bias in-
troduced by culture conditions.

Materials and Methods
Tumor and Nucleic Acid Samples. Formalin-fixed paraffin-embedded tumor
specimens and fresh-frozen tumor specimens were collectedwith consent per
protocols approved by the Conjoint Health Research Ethics Board of the
University of Calgary. Only tumors classified histologically as GBM according
to 2007 WHO CNS tumor classification criteria were included. DNA and RNA
were extracted from frozen tumormaterial using DNeasy (Qiagen) and TRIzol
(Invitrogen), respectively, per the manufacturers’ protocols.

Establishment of BTIC Lines and Xenografts. Surgical samples from patients
with newly diagnosed and recurrent glioblastoma were obtained from the
Tumor Tissue Bank within the Arnie Charbonneau Cancer Institute, trans-
ported to the BTIC Core Facility, and established as described previously (2).
Patient-derived BTICs were implanted into the brains of SCID mice as de-
scribed previously (18, 41). Following sacrifice, the brains were removed, and
tumors were excised and flash-frozen in liquid nitrogen. All procedures were
reviewed and approved by the University of Calgary Animal Care Committee
(Animal Protocol #AC17-0230). A more detailed description is included in
SI Appendix.

Whole-Genome Sequencing and Analysis. We implemented an automated
version of the TruSeq DNA PCR-Free Kit (FC-121-1002; Illumina). Sheared DNA
was end-repaired and size-selected using AMPure XP beads targeting a 300-
to 400-bp fraction. After 3′ A tailing, full-length TruSeq adapters were
ligated. The PCR-free library concentration was quantified using a qPCR
Library Quantification Kit (KK4824; KAPA). After passing QC, the library was
sequenced using the Illumina HiSeq 2000 and 2500. The sequencing depth is
∼30× for each tumor genome.

Reads were aligned to the human genome (GRCh37-lite) using BWA
(v0.5.7) (42). Reads from multiple lanes were merged and duplicate-marked
using Picard (v1.71) (43). Variants were called using mpileup (SAMtools
v0.1.17) (44) and subsequently filtered with the built-in varFilter function.
Each tumor sample (metastasis and primary) was compared with the normal
sample to identify somatic copy-number variants (CNAseq v0.0.6) (45), loss-
of-heterozygosity (LOH) events (APOLLOH v0.1.1) (46), single-nucleotide
variants [SAMtools v0.1.17; MutationSeq v1.0.2 (47); Strelka v0.4.6.2 (48)],
and small insertions and deletions (Strelka v0.4.6.2). Variants were anno-
tated to genes with SnpEff (v3.2a) (49) using the Ensembl database (v69)
(50). For tumor and xenograft samples, we evaluated tumor purity based on
copy number, LOH, and variant allele frequency, and removed samples with
tumor purity less than 20%.

Transcriptome Sequencing and Analysis. Strand-specific RNA sequencing was
done with the Illumina HiSeq 2000 and 2500. RNA-seq reads were analyzed
with JAGuaR (51) to include alignments to a database of exon junction se-
quences and subsequent repositioning onto the genomic reference. RNA-seq
data were processed using in-house pipeline coverage analysis and nor-
malized expression level. Gene expression in the tumor was compared with a
compendium of normal tissues and with 1 or more normal libraries from the

same tissue type to identify up- and down-regulated genes. Expression levels
were also evaluated by comparing against tumor and normal samples from
The Cancer Genome Atlas project. Both genomic and RNA-seq tumor data
were also assembled using Trans-ABySS (v1.4.3) (52) to identify structural
variants and fusion genes. Differential expression analysis was performed
using DESeq2 (v1.18.1) (53). Differentially expressed genes were called based
on a minimum log2 fold change of 2.0 and a Benjamini–Hochberg adjusted
P-value cutoff of 0.01. Datasets S1, S2, and S4 contain the mean of counts,
log2 fold change, SE of the log2 fold change, Wald statistic, P value, and
adjusted P value for all differentially expressed genes. Gene ontology en-
richment analysis was performed using DAVID 6.8 (54).

We used 3 approaches to determine the subtype of each sample: gene
enrichment analysis, Spearman correlation, and heuristic clustering. Ap-
proach 1: For each of our samples, we collected the RPKM values of 800 genes
that determine GBM subtypes as described previously (11), and used the
single-sample gene set enrichment analysis (ssGSEA) algorithm from the
Broad Institute to determine the subtype of our samples (55). Approach 2:
We collected all of the RNA-seq data as well as the subtype of GBM samples
from TCGA. For each sample, we conducted a Spearman correlation with all
GBM samples using the same 800 genes, and assigned the subtype of TCGA
GBM sample with the highest correlation to our sample. Approach 3: We
performed a heuristic clustering of all samples using the 800 signature
genes. Samples within the same cluster were assigned the same subtype. We
determined the subtype of each sample by a majority-win voting scheme
based on the 3 prediction approaches described above.

Methylation Profiling and Analysis.Approximately 750 ng of DNAwas used for
bisulfite conversion using the EZ DNA Methylation Kit (Zymo Research).
Following bisulfite conversion, samples were randomized and 160 ng of
bisulfite-converted DNA was applied to the Infinium HumanMethylation450
BeadChip array, as per the manufacturer’s protocols (Illumina) (56). Illumina
GenomeStudio v2011.1 software was used for initial quality control checks
followed by color correction and background adjustment using control
probes contained on the 450K array. Subsequent processing and analysis
were performed in R (v3.1.1) (57). More details on probe processing are in-
cluded in SI Appendix. Methylation subtypes were determined using the
methylation profiling classifier previously published (14). Methylation status
of the MGMT promoter was determined from Illumina 450K data by
implementation of the MGMT-STP27 model, as previously described (58, 59).

Data Availability Statement. All genome and transcriptome sequencing
datasets in this study have been deposited in the European Genome-
phenome Archive; the accession number is EGAS00001002709. The methyl-
ation data have been deposited in the Gene Expression Omnibus; the ac-
cession number is GSE128654.
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