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Summary

Increasing evidence suggests that deficits in adult stem cell
maintenance cause aberrant tissue repair and premature

aging [1]. While the mechanisms regulating stem cell
longevity are largely unknown, recent studies have impli-

cated p53 and its family member p63. Both proteins regulate
organismal aging [2–4] aswell as survival and self-renewal of

tissue stem cells [5–9]. Intriguingly, haploinsufficiency for
a third family member, p73, causes age-related neurodegen-

eration [10]. While this phenotype is at least partially due to

loss of the DNp73 isoform, a potent neuronal prosurvival
protein [11–16], a recent study showed that mice lacking

the other p73 isoform, TAp73, have perturbations in the
hippocampal dentate gyrus [17], a major neurogenic site in

the adult brain. These findings, and the link between the
p53 family, stem cells, and aging, suggest that TAp73 might

play apreviously unanticipated role inmaintenance of neural
stem cells. Here, we have tested this hypothesis and show

that TAp73 ensuresnormal adult neurogenesis bypromoting
the long-term maintenance of neural stem cells. Moreover,

we show that TAp73 does this by transcriptionally regulating
the bHLHHey2,which itself promotes neural precursormain-

tenance by preventing premature differentiation.

Results

TAp73 Is Necessary to Promote Maintenance of Postnatal
Dentate Gyrus Precursors

TAp732/2 [17] mice display an aberrant hippocampal dentate
gyrus (DG), a phenotype of unknown etiology. To understand
this, we characterized TAp73 expression and developmental
onset of the phenotype. RT-PCR (Figure 1A) and immunostain-
ing (Figure 1B) demonstrated that TAp73 is expressed in the
newborn mouse hippocampus, where it is predominantly
localized to nuclei of cells that coexpress Tbr2, a marker for
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type 2a precursors [18] (Figure 1B). To determine when the
DG first became aberrant, we Nissl stained the postnatal
hippocampus (Figure 1C and Figure S1A, available online);
TAp732/2 and TAp73+/+ hippocampi were morphologically
similar at birth, started to show some differences at postnatal
day 6 (P6), and by P16 the dorsal lower blade of the TAp732/2

DG was missing. Confirmation that the DG was similar at
earlier time points was obtained by immunostaining newborn
sections for nestin and prox1, markers for precursors and
DG neurons, respectively (Figure S1B).
Because the region that becomes aberrant postnatally is

comprised of the last-born DG neurons [19], this suggests
that TAp73 is necessary for postnatal neurogenesis. To test
this idea, we studied ongoing neurogenesis in the adult hippo-
campus [20]. Adult TAp732/2 and TAp73+/+mice were injected
with BrdU, and hippocampi were analyzed immunocytochem-
ically 24 hr later (Figure 1D). Quantification showed an almost
2-fold decrease in proliferating, BrdU-positive precursors in
the TAp732/2 subgranular zone (SGZ; the location of the DG
precursors) of both the lower and upper DG blades (Figures
1D and 1E). Similarly, doublecortin-positive newly born
neurons (Figure 1D) were also reduced approximately 2-fold
in the TAp732/2 DG (Figure 1F). Thus, TAp73 loss depletes
adult DG precursors and decreases neurogenesis.
To ask whether this phenotype reflected a cell-intrinsic

precursor deficit, we cultured TAp73+/+ and TAp732/2 P3
hippocampal cells in FGF2 and EGF to generate neurospheres
[21]. RT-PCR demonstrated that TAp73, DNp73, and p53
mRNAs were expressed in DG neurospheres and that DNp73
and p53 mRNA levels were unaltered by loss of TAp73 (Fig-
ure 1G). Immunostaining confirmed that the majority of
TAp73+/+ but not TAp732/2 neurosphere cells expressed
nuclear TAp73 (Figure 1H). Quantitative analysis at clonal
density demonstrated that TAp73+/+ and TAp732/2 neonatal
hippocampi contained similar numbers of neurosphere-gener-
ating precursors (Figure 1I), consistent with the lack of an
in vivo phenotype at birth. However, when sequentially
passaged, the TAp732/2 neurosphere-forming cells were
progressively depleted (Figure 1J), indicating that TAp73 is
required for long-term precursor maintenance. In contrast,
mean neurosphere diameter (Figure 1K) and Ki67-positive
proliferating cells (Figures 1L and 1M) were unchanged, sug-
gesting that TAp73 is not necessary for proliferation of biased
progenitors, which comprise the majority of cells in the
spheres.

Loss of TAp73 Depletes Adult SVZ Precursors
and Decreases Olfactory Neurogenesis

To ask whether TAp73 is required for maintenance of other
adult neural precursors, we examined olfactory neurogenesis,
which is ongoing for the life of the animal [20]. Adult TAp73+/+

and TAp732/2 mice were injected five times with BrdU over
a 12 hr period. Quantitative immunocytochemical analysis of
their olfactory bulbs 30 days later demonstrated an almost
2-fold decrease in BrdU-positive newly born neurons express-
ing the neuron-specific protein NeuN (Figures 2A and 2B and
Figure S2A) in TAp732/2 mice. To ask whether this was due
to depletion of precursors, we generated clonal neurospheres
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Figure 1. TAp73 Regulates Hippocampal DG Precursors and Neurogenesis

(A) RT-PCR analysis for TAp73 mRNA in the postnatal (P0) and adult hippocampus. Negative controls lacked reverse transcriptase (RT2).

(B) Immunostaining for TAp73 (green) and Tbr2 (red) in a coronal section through the newborn DG. The boxed areas in the top panels are shown at higher

magnification in the bottom panel. Arrows denote double-labeled cells.

(C) Nissl stained TAp73+/+ versus TAp732/2 hippocampus at P16. Arrows indicate lower DG blade.

(D) DG of adult TAp73+/+ versus TAp732/2 mice pulsed with BrdU for 24 hr, immunostained for BrdU (green) or doublecortin (DCX, red), and counterstained

with Hoechst (blue).

(E and F) Total cells positive for BrdU (E) and doublecortin (F) in the upper and lower DG blades, obtained by counting serial sections as in (D). *p < 0.05, n = 3

each.

(G) RT-PCR for TAp73, DNp73, and p53 mRNAs in P3 TAp73+/+ and TAp732/2 hippocampal neurospheres.

(H) P3 TAp73+/+ and TAp732/2 hippocampal neurospheres immunostained for TAp73 (red) and counterstained with Hoechst 33258 (blue).

(I) Number of primary clonal neurospheres generated from 10,000 dissociated cells from P3 TAp73+/+ and TAp732/2 hippocampi.

(J and K) Number (J) andmean diameter (K) of clonal neurospheres generated from 4,000 TAp73+/+ and TAp732/2 P3 hippocampal neurosphere cells at one

(2�/1�), two (3�/2�), and three (4�/3�) passages. *p < 0.05, n = 3 independent cultures.

(L) Immunostaining of TA73+/+ and TAp732/2 hippocampal neurospheres for the proliferation marker Ki67 (red; cells were counterstained with Hoechst

33258, blue).

(M) Quantification of cultures similar to (L) for percentage of Ki67-positive cells. p > 0.05, n = 3. Error bars = S.E.M. See also Figure S1.
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Figure 2. TAp73 Is Necessary for Maintenance

of SVZ Precursors and Normal Olfactory

Neurogenesis

(A) Tap732/2 olfactory bulb 1 month after BrdU

injections, immunostained for BrdU (green) and

NeuN (red) to detect newly born olfactory bulb

neurons. The boxed area is shown at higher

magnification at right. Arrows denote double-

labeled cells.

(B) Total newly born neurons in TAp73+/+ versus

TAp732/2 olfactory bulbs as determined from

serial sections similar to that in (A). **p < 0.01,

n = 3 each.

(C and D) Adult SVZ TAp73+/+ and TAp732/2 neu-

rospheres shown (C) under phase illumination or

(D) immunostained for TAp73 (red) and counter-

stained with Hoechst (blue).

(E) Clonal neurospheres generated from 20,000

primary SVZ cells from 2-month-old TAp73+/+

versus TAp732/2 mice as shown in (C). **p < 0.01,

n = 3.

(F and G) Number (F) and mean diameter (G) of

clonal neurospheres generated from 4,000

TAp73+/+ and TAp732/2 2-month-old SVZ neuro-

sphere cells at one (1�/2�), and two (2�/3�)
passages. The data in (F) are expressed relative

to the number of control TAp73+/+ neurospheres.

*p < 0.05, n = 3.

(H–M) Primary TAp73+/+ and TAp732/2 SVZ

neurospheres were immunostained for Ki67

(H, green), GFAP (J, red), or nestin (L, green) (cells

were counterstained with Hoechst in blue) and

the percentage of positive cells quantified (I, K,

and M). In all cases, n = 3 independent neuro-

sphere isolates, p > 0.05. Error bars = S.E.M.

See also Figure S2.
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from the lateral ventricle SVZ, where the relevant precursors
reside [22] (Figure 2C). Immunostaining showed that most
wild-type SVZ neurosphere cells expressed nuclear TAp73
(Figure 2D). However, relative to wild-type neurosphere
numbers, the TAp732/2 SVZ cells generated only 61% as
many neurospheres at 2 months of age (Figure 2E) and 55%
as many at 1 year of age (19.4 6 0.9 versus 10.7 6 0.9 neuro-
spheres per 20,000 SVZ cells, wild-type versus knockout;
p < 0.05), indicating there were fewer SVZ stem cells. More-
over, when sequentially passaged, the TAp732/2 neuro-
sphere-forming cells were progressively depleted (Figure 2F
and Figure S2B). However, as for DG neurospheres, sphere
diameter and percentage of Ki67-positive proliferating cells
were similar between genotypes (Figures 2G–2I) as were the
percentages of GFAP- and nestin-positive cells (Figures 2J–
2M). Moreover, in both TAp73+/+ and TAp732/2 neurospheres,
only a few cleaved caspase-3-positive apoptotic cells were
observed, and bIII-tubulin-positive neuronswere undetectable
(data not shown). Thus, TAp73 is specif-
ically required for self-renewal and long-
term maintenance of adult neural stem
cells.

Hey2 Is Reduced in Tap732/2 Neural
Precursors and Is a Transcriptional

Target of TAp73
To ask how TAp73 regulates neural
precursor maintenance, we turned to
a more experimentally amenable
system, developing cortical radial precursors [23–27], which
ultimately contribute to the adult SVZ stem cell pool [28]. RT-
PCR (Figure 3A) and immunostaining (Figure 3B) showed
that TAp73 was expressed in the nuclei of nestin-positive
precursors of the embryonic cortical ventricular zone (Fig-
ure 3B). As predicted by this finding, cultured E12 cortical
precursors expressed TAp73 mRNA and nuclear-localized
TAp73 protein (Figures 3A and 3C). We then used acute
genetic knockdown to ask whether TAp73 regulates mainte-
nance of these precursors. We generated two shRNAs that
target TAp73 but notDNp73 and assessed their efficacy by co-
transfecting them into HEK293 cells with TAp73 or, as
controls,DNp73,p53,TAp63, orDNp63.Wealso usedacontrol
shRNA or two previously described shRNAs specific for
DNp73 [5]. Western blots showed that the TAp73-specific
shRNAs decreased levels of TAp73, but not of DNp73, p53,
TAp63, or DNp63 (Figure 3D). We then characterized cortical
precursors that were cotransfected with these TAp73 shRNAs
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and EGFP. TAp73 knockdown had no effect on apoptotic,
cleaved caspase-3-positive cells (scrambled shRNA,
16.9% 6 2.0%; TAp73 shRNA TA-1, 15.3% 6 2.0%; TA-2,
19.3% 6 1.9%; p > 0.05, n = 3), but it did decrease the
percentage of proliferating Ki67-positive precursors (Fig-
ure 3E). This decrease was rescued by cotransfection with
human TAp73 that is not targeted by the shRNA (Figure 3F).

To ask whether this proliferative effect was indicative of
decreased maintenance, we transfected E13.5 radial precur-
sors in vivo with TAp73 or DNp73 shRNAs by performing in
utero electroporation (Figure 3G and Figures S3A and S3B).
Analysis 2 days after electroporation showed that TAp73
knockdown, but not DNp73 knockdown (p > 0.05, n = 3),
decreased the percentage of transfected cells expressing
Ki67 (Figure 3H) or the radial precursor marker pax6 (Figure 3I).
Thus, TAp73 is necessary tomaintain the pool of cortical radial
precursors.

We then used this system to determine how TAp73
promotes precursor maintenance. We initially examined the
embryonic TAp732/2 cortex for genes that are known p53
family targets and/or that are implicated in neural precursor
regulation. RT-PCR showed unaltered mRNA levels for
DNp73, p53, and TAp63, the cell-cycle regulators p16, p19,
p21, p27, p57, and the self-renewal gene Bmi1 (Figure S3C).
However, the mRNA for Hey2, a bHLH that promotes neural
precursor maintenance when overexpressed [29], was
decreased. In contrast, Hey1mRNAwas unaffected. Quantita-
tive real-time PCR confirmed these findings (Figure 3J) and
showed a similar decrease in Hey2 mRNA in neonatal
TAp732/2 hippocampal neurospheres (Figure 3K). Analysis
of the Hey2 promoter defined a putative p53/p63/p73
consensus binding site 646 nucleotides upstream of the tran-
scription start site (Figure 3L), suggesting that Hey2 is a direct
transcriptional target of TAp73. To test this idea, we performed
chromatin immunoprecipitation (ChIP) assays on the P0 brain;
in the TAp73+/+ but not TAp732/2 cortex (Figure 3M) and
hippocampus (data not shown), TAp73 was bound to a Hey2
promoter region from 2727 to 2547, which brackets the p73
consensus site. To ask whether this binding promoted Hey2
transcription, we cotransfected HEK293 cells for 2 days with
a plasmid that included 3.5 kb of the Hey2 promoter fused to
the firefly luciferase gene [30] with or without a TAp73 expres-
sion construct. TAp73 caused a 5-fold increase in firefly lucif-
erase levels (Figure 3N) in this assay. Thus, TAp73 binds to and
transactivates the Hey2 promoter.
Hey2 Functions Downstream of FGF2 and TAp73

to Maintain Neural Precursors
These data suggest TAp73 promotes precursor maintenance
by enhancing Hey2 transcription. However, although Hey2 is
expressed in cortical precursors [29], its endogenous function
is unknown. To ask whether Hey2 maintains precursors, we
generated Hey2 shRNAs, testing their efficacy by cotransfect-
ing them with Hey2 or Hey1 constructs in HEK293 cells.
Western blots (Figure 4A) showed that these shRNAs
decreased Hey2 but not Hey1 levels. We then transfected
these shRNAs into cortical precursors and analyzed them
2 to 3 days later. Hey2 knockdown reduced proliferating
Ki67-positive precursors (Figure 4B) and increased bIII-
tubulin-positive newly born neurons (Figure 4C). We per-
formed similar experiments in vivo, electroporating E13.5
cortices. Hey2 knockdown decreased Ki67-positive precur-
sors (Figures 4D and 4E) and increased newly born,
doublecortin-positive neurons (Figure 4F). Thus, Hey2, like
TAp73, maintains radial precursors in an undifferentiated
state.
To askwhether TAp73 acts upstream of Hey2, we performed

two final experiments. First, we asked whether FGF2, which is
necessary for neural precursor maintenance [31], enhanced
TAp73-mediated Hey2 transcription. Precursors were estab-
lished in FGF2 and then cultured with or without FGF2 for
3 days. Quantitative real-time PCR showed that Hey2 but not
TAp73 mRNA levels increased approximately 2-fold in FGF2
(Figure 4G). ChIP assays showed that FGF2 also increased
binding of TAp73 to the Hey2 promoter TAp73 site (Figure 4H),
potentially explaining the increase in Hey2mRNA. Second, we
asked whether Hey2 reexpression could rescue the TAp73
knockdown phenotype. Precursors were cotransfected with
scrambled or TAp73 shRNAs with or without Hey2 for
2 days. Hey2 transfection rescued the numbers of Ki67-posi-
tive proliferating precursors (Figure 4I). Thus, TAp73 acts
upstreamof Hey2 in a pathway that promotes themaintenance
of neural precursor pools.

Discussion

Data presented here define a TAp73-Hey2 transcriptional
pathway that, when disrupted, causes depletion of adult
neural stem cells and decreases adult neurogenesis. Previous
studies of p73 in the nervous system have largely focused
upon DNp73, a potent neuronal survival protein [11–16].
However, a recent report showed that the hippocampal DG
was aberrant in adult TAp732/2 mice [17], although the
reasons for this phenotype were unknown. We show that this
phenotype and the impaired adult neurogenesis we document
here are due to loss of TAp73-mediated Hey2 transcription.
Hey2 is a negative bHLH that functions to suppress activator
bHLHs [32, 33] and that acts downstream of Notch in cardiac
cells and FGF12 in inner ear pillar cells [34]. Here, we found
that Hey2 acts downstream of TAp73 and that FGF2, a key
proliferation and maintenance factor for neural precursors
[31], enhances TAp73-mediated transcription of Hey2. Thus,
TAp73 and Hey2 join a small group of proteins that promote
neural precursor maintenance and self-renewal, including Lfc
[27], Bmi-1 [35], TLX [36], and the Notch pathway [37].
These findings have important implications for nervous

system aging and neurodegeneration. Mice heterozygous for
p73 display age-dependent neurodegeneration [17], a pheno-
type attributed to loss of the DNp73 prosurvival isoform.
However, our findings suggest that if adult neural stem cells
play a role in maintaining the degenerating nervous system,
then this premature aging phenotype may also be partially
due to decreased TAp73 levels. Whether or not TAp73 plays
a role inmaintaining the brain and preventing premature cogni-
tive aging is therefore a key question for future studies.

Experimental Procedures

Animals

This study was approved by The Hospital for Sick Children’s Animal Care

Committee and use was in accordance with Canadian Council on Animal

Care guidelines. TAp73+/2mice were maintained on a C57BL/6 background

as described [17].

Plasmids and Primers

The shRNAs against TAp73 and Hey2 were designed by OligoEngine soft-

ware and cloned into the pSUPER retro.neo+gfp vector. The sequences

were TAp73 shRNA-1-, 50-AGAGCCAGACAGCACCTAC-30, TAp73 shRNA-2,
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Figure 3. Expression of Hey2, a Direct Transcriptional Target of TAp73, Is Decreased in Tap732/2 Precursors

(A) RT-PCR for TAp73 in the developing cortex (top), and cortical precursors cultured 1 day (bottom).

(B) Immunostaining for nestin (green) and TAp73 (red) in the E13 cortical neuroepithelium adjacent to the ventricle. Arrows denote double-labeled cells.

(C) Cortical precursors cultured 1 day, immunostained for TAp73 (red) and counterstained with Hoechst (blue).

(D) Western blots of HEK293 cells cotransfected with shRNAs targeted to DNp73 (DN1, DN2) or to TAp73 (TA1, TA2) together with plasmids encoding

TAp73, DNp73, p53, DNp63, or TAp63 and probed with antibodies to the indicated proteins. Blots were reprobed with anti-Erk1 to ensure equal loading.

(E) Percentage of Ki67-positive precursors (E) in cortical cultures cotransfected with EGFP and scrambled (scr) or TAp73 shRNAs (TA1 and TA2) for

2 days. **p < 0.01, n = 3.

(F) Rescue experiment quantifying Ki67-positive proliferating precursors in cortical cultures cotransfected with EGFP and scrambled (scr) or TAp73

shRNA with or without a human TAp73 cDNA (hTAp73) for 2 days. Some cells received empty vector in place of human TAp73 cDNA (MOCK).

**p < 0.01, n = 3.

(G) Cortical section electroporated with EGFP and TAp73 shRNA at E13.5 and immunostained for EGFP (green) and Ki67 (red) at E15/E16. Arrow denotes

a double-labeled cell.

(H and I) Quantification of cortical sections similar to (G), electroporated with scrambled (scr) or TAp73 shRNA for the percentage of transfected, Ki67-

positive cells (H) or pax6-positive precursors (I). *p < 0.05, n = 3.
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Figure 4. Hey2 Promotes Maintenance of Neural Precur-

sors and Is Downstream of TAp73

(A)Western blots of HEK293 cells cotransfected with

Hey2 or Hey1 expression plasmids and Hey2 shRNAs

(Hey2-1, Hey2-2) and probed with antibodies to Hey2,

Hey1, or Erk1/2 to assure equal protein loading.

(B and C) Relative numbers of Ki67-positive precursors

(B) or bIII-tubulin-positive neurons (C) in cortical cultures

cotransfected with EGFP and scrambled shRNA or

shRNAs to Hey2. *p < 0.05, ***p < 0.005, n = 3.

(D) Cortical section electroporated with EGFP and Hey2

shRNA at E13.5 and immunostained 2 days later for

EGFP (green) and (Ki67) (red). Arrows denote double-

labeled cells. V = ventricle.

(E and F) Quantification of cortices electroporated with

Hey2 shRNA or scrambled shRNA as in (D) for trans-

fected, Ki67-positive precursors (E) or doublecortin-

positive neurons (F). *p < 0.05, **p < 0.01, n = 3.

(G) Quantitative real-time PCR for Hey2 and TAp73

mRNAs in precursors cultured 3 days with or without

FGF2. *p < 0.01, n = 3.

(H) ChIP assays for TAp73 binding to the Hey2 promoter

region containing the p53 family consensus site in

cortical precursors cultured 3 days with or without

FGF2. Shown is a representative gel loaded with the

amplified promoter regions from nonimmunoprecipi-

tated input (I), extracts immunoprecipitated with anti-

TAp73(A), or control nonimmune IgG (N).

(I) Rescue experiment quantifying the relative number of

Ki67-positive proliferating precursors that were cotrans-

fectedwith EGFP and scrambled or TAp73 shRNAwith or

without a Hey2 cDNA expression plasmid for 2 days.

Some cells received the empty vector rather than Hey2

cDNA (Mock). *p < 0.05, n = 3. Error bars = S.E.M.
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50-GAGCCAGACAGCACCTACT-30, Hey2 shRNA-1, 50-GGTCCAATTCACC

GACAAC-30, and Hey2 shRNA-2, 50-CCAATTCACCGACAACTAC-30. The

human DNp73a and TAp73a expression plasmids were previously published

[13]; the mouse Hey2 expression vector in pcDNA3.1 and the mouse Hey2

promoter containing pGL2 basic vector were kind gifts from Drs. Ryoichiro

Kageyama [29] and Larry Kedes [30], respectively. All primer information is

in Supplemental Information.

Precursor Cultures

The E12-E13 cortical precursors from CD1 mice were cultured in 40 ng/mL

FGF2 as described [5, 23–27] at a density of 125,000w150,000 cells/well in

four-well chamber slides. For transfections, 1 hr after plating, 1 mg total DNA
(J and K) Quantitative real-time PCR for Hey1, Hey2, Bmi1, and p21 mRNAs in TAp73+/+ and T

spheres (K). *p < 0.05, **p < 0.01, n = 3.

(L) Consensus p53 family response element in the proximal Hey2 rat, mouse and human promo

all 3, and green identity in 2 of 3 species.

(M) ChIP assays where chromatin from TAp73+/+, TAp73+/2 and TAp732/2 P0 cortices was imm

amplify a promoter region encompassing the p53 family binding site. Gel was loaded with PCR p

precipitate (A), or control nonimmune IgG precipitate (N). Results are representative of three in

(N) Heterologous transcriptional assays where HEK293 cells were cotransfected with TAp73 an

containing the p53 family consensus site driving expression of firefly luciferase. Firefly lucifer

driven from a control plasmid cotransfected into the same cells. *p < 0.01, n = 3. Error bars =
and 1.5 ml Fugene 6.0 (Roche) mixed with 100 ml of Opti-

MEM (Invitrogen) were incubated at room temperature

for 45 min and added to the cultures. For adult SVZ neu-

rospheres, the subependyma of the lateral ventricle was

dissected and dissociated as described [38]. Cell density

and viability were determined with trypan blue. Cells

were cultured in the neurosphere assay under clonal

conditions [22] at 10 cells/mL in six-well (2 mL/well)

ultralow attachment dishes (Corning) in serum-free

medium containing 20 ng/mL EGF (Sigma), 10 ng/mL

FGF2 (Sigma), and 2 mg/mL heparin (Sigma). Sphere
number was counted after 6 days; only colonies of at least 10 cells were

counted as spheres. For postnatal hippocampal neurospheres, the third

most dorsal aspect of the hippocampus was dissected and tissue was

trimmed to remove the walls of the third and lateral ventricles [21]. Tissue

was mechanically dissociated, and spheres were cultured and counted as

for SVZ neurospheres. For the assay of self-renewal, neurospheres were

mechanically dissociated into single cell, passed through a cell strainer,

cultured as for primary cultures and spheres counted after 4 days.

Immunocytochemistry

Immunocytochemical analysis of cultured cells was performed as described

[23–27]. Neurospheres were plated for immunocytochemistry by cytospins
Ap732/2 E13.5 cortex (J) or P0-P3 hippocampal neuro-

ter region. Yellow highlights nucleotide identity between

unoprecipitated with anti-TAp73 and PCR was used to

roduct from nonimmunoprecipitated input (I), anti-TAp73

dependent experiments.

d a plasmid encoding a 3.5 kb Hey2 promoter fragment

ase activity was normalized to Renilla luciferase levels

S.E.M. See also Figure S3.
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(Thermo Shandon). All antibody information is in Supplemental Experi-

mental Procedures. For quantification, approximately 200 cells from 8–10

randomly chosen fields (per condition per experiment) were counted.

Images were acquired with Northern Eclipse software (Empix, Mississauga,

Ontario, Canada) with a Sony (Tokyo, Japan) XC-75CE CCD video camera.

In Utero Electroporations and Analyses

In utero electroporations were performed on embryonic day 13–14 with

a square electroporator CUY21 EDIT (TR Tech, Japan) delivering five

50 ms pulses of 50 V with 950 ms intervals per embryo, as described

[23–27]. Embryos were injected with a total of 4.0 ug DNA per embryo, mix-

ing the EGFP expression plasmid at a 1:3 ratio with the shRNA constructs;

0.05% trypan blue was coinjected as a tracer. In utero electroporated brains

were drop fixed in 4% paraformaldehyde, cryosectioned at 16–20 um, and

immunocytochemistry was performed as described [23–27]. Sections with

a similar anatomical distribution of EGFP expression were chosen for anal-

ysis, as described [5, 27]. A total of three to four sections were analyzed per

animal on a Zeiss Pascal confocal microscope (Oberkochen, Germany) by

taking up to three 8–10 mmz-stack pictures per section with a 403 objective

as described [5, 27]. Statistics were performed with either the Student’s t

test or one-way ANOVA, as appropriate.

Neuroanatomy and BrdU Labeling

Nissl staining and immunohistochemistry of neonatal and adult brains, with

the exception of the BrdU experiments, were performed as described [13].

For hippocampal BrdU experiments, 100 mg/kg BrdU (Sigma) was adminis-

tered intraperitoneally; mice were sacrificed by sodium pentobarbital over-

dose and transcardially perfused with PBS followed by 4% PFA. Brains

were postfixed overnight and the hippocampus was sectioned transversally

on a vibratome at 40 mm. Every fourth hippocampal section was analyzed

immunocytochemically for BrdU as described [39]. All BrdU-labeled nuclei

in the SGZ (defined as two cell diameters beneath the granule cell layer),

were counted, and blade length was measured. For SVZ experiments,

mice were injected with 60 mg/kg BrdU intraperitoneally every 3 hr for five

injections and sacrificed 30 d later [40]. Animals were overdosedwith pento-

barbital and perfused transcardially with PBS and 4% paraformaldehyde.

Brains were postfixed, cryoprotected, and cryosectioned at 14 mm. Sections

were incubated in 1 N HCl at 60�C for 30 min, rinsed in PBS, incubated in rat

anti-BrdU antibody at 4�C overnight and then in Alexa 488 donkey anti-rat

antibody for 2 hr, followed by sequential immunostaining with anti-NeuN,

followed by an Alexa Fluor 555-conjugated goat anti-mouse secondary anti-

body. The main olfactory bulb was serially sectioned, and the total number

of BrdU-labeled cells determined in the granule cell layer of every tenth

section, extending just anterior to the rostral portion of the accessory olfac-

tory bulb.

Western Blotting

Western blots were performed with 20–30 mg of HEK293 protein lysates

2 days after transfections, as described [5, 41]. Antibodies are listed in

Supplemental Experimental Procedures.

RT-PCR Analysis

RNA was isolated by the Trizol method (Invitrogen). RNA was treated with

DNase (Fermentas) to avoid contamination with genomic DNA. Reverse

transcription was carried out with RevertAid H Minus M-MuLV Reverse

Transcriptase (Fermentas) primed with random hexamers, according to

manufacturer’s instructions. Primer information is in Supplemental Informa-

tion. For quantitative real-time PCR, total RNA was extracted with Trizol

reagent (Invitrogen) and the RNeasy kit (QIAGEN). cDNA for qRT-PCR was

prepared with SuperScript III First-Strand Synthesis SuperMix (Invitrogen).

Real-time PCR was performed according to the manufacturer’s specifica-

tions with Chromo4 Real-Time PCR Detection System (Bio-Rad) and a Plat-

inum Quantitative PCR Super-Mix-UDG (Invitrogen). Samples were

analyzed in triplicate and were normalized to b-actin for each reaction. All

PCR products were single bands with predicted molecular weights.

Chromatin Immunoprecipitation Assays

Chromatin immunoprecipitation(ChIP) assays of cortical tissue were per-

formed as described [42]. Chromatin was immunoprecipitated with an

affinity purified rabbit polyclonal antibody to TAp73 (Bethyl Laboratories)

or rabbit nonimmune IgG antibody. One-tenth of the lysate was kept to

quantify the amount of DNApresent in different samples before immunopre-

cipitation (input). PCR amplification was performed with primers that

amplify the genomic fragment from 2727 bp to 2547 bp of the mouse
Hey2 promoter region (GenBank accession number AY059384, –3521bp):

50-TGACCACAACCTAGAGGCT-30 and 50-GTGAGCGTGTGTGACGT-30.
Varying amounts of template were used to ensure that results were within

the linear range of the PCR reaction.

Heterologous Transcriptional Assays

Human embryonic kidney (HEK) 293 cells (6 3 104 per well of a six-well

culture plate) were transiently cotransfected with a total amount of 1.5 mg

of plasmid DNA: 1.0 mg Hey2 promoter-pGL2 firefly luciferase reporter

vector [30], 100 ng of the pRL-TK Renilla luciferase control vector (Prom-

ega), and/or 0.5 mg of the indicated pCDNA3.1 mouse TAp73a expression

plasmid or empty control vector, using Lipofectamine 2000 Transfection

Reagent (Invitrogen) according to the manufacturer’s protocol. Seventy-

two hours after transfection, the cells were washed (13PBS) and then lysed

(300 ml passive lysis buffer, Promega) with gentle rocking (21�C, 15 min).

Activities of luciferases encoded by experimental and internal control plas-

mids were measured sequentially with the Dual Luciferase Assay kit (Prom-

ega) and a Lumat LB 9507 Single Tube Luminometer (Berthold Technolo-

gies) according to the manufacturer’s protocol. Transfections were

repeated a minimum of three times with different cultures of HEK293 cells.

Accession Numbers

The GenBank accession number for the Hey2 promoter region sequence

reported in this paper is AY059384.

Supplemental Information

Supplemental Information includes Supplemental Experimental Procedures

and three figures and can be found with this article online at doi:10.1016/j.

cub.2010.10.029.
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