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pose: Neuroblastoma (NB) is an aggressive tumor of the developing peripheral nervous system that
ns difficult to cure in the advanced stages. The poor prognosis for high-risk NB patients is associated
ommon disease recurrences that fail to respond to available therapies. NB tumor-initiating cells
, isolated from metastases and primary tumors, may escape treatment and contribute to tumor
e. New therapies that target the TICs may therefore prevent or treat tumor recurrences.
erimental Design: We undertook a system-level characterization of NB TICs to identify potential
argets against recurrent NB. We used next-generation RNA sequencing and/or human exon arrays to
the transcriptomes of 11 NB TIC lines from six NB patients, revealing genes that are highly ex-

d in the TICs compared with normal neural crest-like cells and unrelated cancer tissues. We used
e two-dimensional liquid chromatography coupled to shotgun tandem mass spectrometry to con-
he presence of proteins corresponding to the most abundant TIC-enriched transcripts, thereby pro-
validation to the gene expression result.
ults: Our study revealed that genes in the BRCA1 signaling pathway are frequently misexpressed in
Cs and implicated Aurora B kinase as a potential drug target for NB therapy. Treatment with a
ve AURKB inhibitor was cytotoxic to NB TICs but not to the normal neural crest-like cells.
clusion: This work provides the first high-resolution system-level analysis of the transcriptomes of
Con

11 primary human NB TICs and identifies a set of candidate NB TIC-enriched transcripts for further
development as therapeutic targets. Clin Cancer Res; 16(18); 4572–82. ©2010 AACR.
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roblastoma (NB) is the most common and fatal ex-
ial solid tumor of children. Despite aggressive che-
rapy and radiation therapy, <40% of patients with
isk disease achieve long-term survival (1). The failure
rent therapies is due to a high rate of tumor relapse
lethal in most cases (2). New therapies that can pre-
r treat disease recurrences are therefore necessary to
e better prognosis for children with high-risk NB.
as been suggested that failure of chemotherapy, radi-
therapy, and targeted approaches to permanently
cancers such as high-risk NB is due to inher-
nce of cancer stem cells or tumor-initiating
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TICs) that survive the treatment and subsequently re-
te the tumor (3). Cancer stem cells or TICs have been
bed in a variety of hematopoietic and solidmalignan-
ncluding those of the breast, brain, pancreas, liver,
nd colon (4). Primary TIC lines have also been isolat-
mNB tumors andmetastases from patients, and these
ecapitulated metastatic NB in an orthotopic mouse
l with as few as 10 cells (5). NB TICs and cancer stem
hare several properties, including the ability to self-
and differentiate into cell types observed in the bulk

express stem cell markers, and exhibit enhanced tu-
nic potential as compared with established cell lines

ic,N.Grinshtein, andL.M.Hansford contributedequally to thiswork.
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Tra slational Relevance

Th study provides a proof of principle that next-
gen ration sequencing of primary human neuro-
blas ma (NB) tumor-initiating cells (TICs) can reveal
ther peutically relevant candidates in NB. The tran-
scrip omewide analysis of 11 NB TIC lines revealed
30 t rgets with an available inhibitor, six of which
hav never been implicated in NB. AURKB, one of
the x novel drug targets, was selected for further val-
idat n based on its biological significance, and the
kno n role of its isoform, AURKA, in NB. Treatments
with a selective AURKB inhibitor, AZD1152, were cyto-
toxi to NB TICs used in the study but not to normal
ped tric neural crest-like precursor cells. Although
AUR A inhibitors are currently in clinical trials for
NB, o our knowledge, this study provides the first re-
port f AURKB inhibitors as potential therapeutics for
NB. ecause AURKB inhibitors are already in clinical
trial , there is potential for rapid translation of this
obse vation to NB therapy.
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recent study using chronic myeloid leukemia stem
rovided proof of principle that targeting a cancer stem
nriched gene could lead to the eradication of such
nd a potential disease cure (6). Therefore, NB TICs,
are primary cell lines with very high tumorigenic
tial in immunosuppressed mice provide a model for
velopment of improved therapies for recurrent and
tatic NB.
describe here an RNA sequencing approach (7, 8)
ed to characterize a panel of NB TICs and normal
l crest-like skin-derived precursor cells (SKP) isolated
human foreskins (9), aiming to identify transcripts
entially abundant in NB TICs. SKPs are multipotent
sors isolated from human foreskin that are able to
new and differentiate into various neural crest deri-
s, including peripheral neurons and Schwann cells
ecause NB is a tumor of neural crest precursors
SKPs provide a normal reference transcriptome for
entification of candidate gene expression changes as-
ed with the TIC phenotype (5). To increase the spec-
of the identified gene expression changes, we also
RNA sequencing data derived from breast, skin,
lymph node, ovary, cervix, and lung tumors, and

nes to identify transcripts enriched in abundance in
Cs compared with other tumor types.
dentify existing therapeutics that could be applied to
atment of recurrent NB, we used Ingenuity Pathway
sis software (Ingenuity Systems) to analyze the func-
significance of identified genes and match them
t a database of available drugs. Our work implicates
sting Aurora B kinase inhibitor, currently in clinical

for acute myeloid leukemia, as a drug repositioning
date for recurrent NB. This study provides the first
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is of NB TIC transcriptomes and illustrates the prin-
that TIC-specific expression profiles are useful for
inting candidate novel therapeutic options for NB.

rials and Methods

ring of NB TIC and SKP lines
TICs and SKPs were cultured as previously described
Briefly, the cells were cultured in DMEM-F12 me-
, 3:1 (Invitrogen), containing 2% B27 supplement
o), 40 ng/mL basic fibroblast growth factor 2, and
/mL epidermal growth factor (both from Collabo-
Research; proliferation media) in 75 cm2 flasks in a
and 5% CO2 tissue-culture incubator. The cell
h conditions were normalized such that NB TICs
cultured for 7 days and SKPs for 14 days postplat-
ior to harvesting in exponential growth phase and
isolation for transcriptome analysis. Details of the
C and SKP samples used in this analysis are out-
in Table 1.

sequencing and data analysis
A sequencing libraries from NB TICs and SKPs were
ucted from DNase I treated mRNA as previously de-
d (11). The libraries were sequenced on an Illumina
me Analyzer. The read length and number of reads
ated for each library is provided in Supplementary
S1. The reads were aligned to the human reference
e (National Center for Biotechnology Information
36.1) and a database of known exon junctions (7)
MAQ software version 0.7.1 in paired-end mode,
e duplicate read pairs were removed (12). The num-
f bases sequenced per the number of exonic bases
ed was used as a measure of gene expression level
ch gene (11). The expression values were square-root
ormed and used in the lmFit function to estimate
hanges between the compared groups by fitting a lin-
odel (13). NB TICs versus SKPs and NB TICs versus
cancers (Supplementary Table S1) were compared
ay. The F-statistical with Benjamini-Hochberg multi-
sting correction implemented in the eBayes function
sed to assess the significance of differential expres-
Those genes with Benjamini-Hochberg–corrected
05 were considered statistically significant.

array experiments and data analysis
ls were collected and lysed in Trizol, and RNA was
ed using RNeasy mini kit (Qiagen). RNA samples
1) were analyzed on Affymetrix GeneChip Human
1.0 ST Arrays. The data were background corrected
ormalized using the Robust Multichip Average pro-
e implemented in the Affymetrix Expression Con-
oftware. Gene-level expression summaries were
uted based on all core probes. Differential gene ex-
on was assessed using the lmFit function of the Lin-
odels for Microarray Data (LIMMA) Bioconductor

ge (13). The significance of differential expression
ssessed as described above for the sequencing data.
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NB121 e m
NB671 e m
NB12- e m
NB88L e m
NB88R e m
NB122 e m
NB122 e m
NB100 l m
NB128 l m
NB153 l r
NB121 l m
FS210 a e l
FS248 a e l
FS253 a e l
FS225 a e l
FS227 a e l
FS2
FS2
FS2

NOTE: Superscripts designate samples from same patients.
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ification of NB TIC-enriched and depleted genes
he functional enrichment analysis
st of significantly differentially expressed genes from
nalysis (NB TICs versus SKPs RNA sequencing, NB
rsus tissue pool RNA sequencing, and NB TIC versus
microarray) was compared against the lists from the
two analyses to derive sets of common upregulated
ownregulated genes. Ingenuity Pathway Analysis
re (Ingenuity Systems) was then used on these sets
ct canonical pathways significantly enriched among
et (P < 0.05).

ee two-dimensional liquid chromatography
ed to shotgun tandem mass spectrometry
rude membrane fraction was prepared as fol-
NB88R2 cells were swollen in hypotonic buffer
mol/L Tris, pH 7.4; 10 mmol/L KCl; 5 mmol/L
vanadate; 1mmol/L phenylmethylsulfonylfluoride)

sed by dounce homogenization. The cleared cell ly-
as centrifuged for 15 minutes at 6,000 × g to collect
ude membrane fraction. The protein fraction was
ended in urea buffer (8 mol/L urea, 2 mmol/L HEPES,
ol/L sodiumpyrophosphate, 1mmol/Lβ-glyceropho-

, and 1 mmol/L vanadate; Cell Signaling Technology)
as reduced and alkylated with 4.5 mmol/L dithiothrei-
TT) and 10 mmol/L iodoacetamide, respectively.
ole-cellular fraction was prepared as follows.
R2 cells were lysed in urea lysis buffer (8 mol/L urea,

ol/L HEPES, 2.5 mmol/L sodium pyrophosphate,
ol/L β-glycerophosphate, and 1 mmol/L vanadate)

of me
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onicated (3 bursts of 4 W for 10 s). The cell lysate
leared by centrifugation (20,000 × g for 15 min at
and was reduced and alkylated with 4.5 mmol/L
nd 10 mmol/L iodoacetamide, respectively. Proteins
igested with trypsin and purified using C18 reverse
resin prior to mass spectrometry.
gel-free two-dimensional liquid chromatography

ed to shotgun tandem mass spectrometry (MudPIT)
sis was done as described (14) with the following
ications: approximately 60 μg (membrane fraction)
μg (whole-cell fraction) of digested protein was an-
on a linear ion-trap LTQ-Orbitrap mass spectrome-

hermoFisher). Samples were loaded using a Proxeon
system (Thermo Fisher Scientific) and subjected
eight-cycle MudPIT. All data was analyzed using
st (ThermoFinnigan; version SRF v. 5) and X!
m (http://www.thegpm.org/; version 2007.01.01.2
embrane fraction or version TORNADO 2009.04.01.3
ole-cell fraction) search algorithms using the Human
ational Protein Index database (version 3.41 with
5 entries or version 3.66 with 86,845 entries for
rane and whole-cell fractions, respectively). Sequest
! Tandem were searched with a fragment ion mass
nce of 0.50 or 0.40 Da for membrane and whole-cell
n, respectively, and a parent ion tolerance of 2.0 or
m for membrane or whole-cell fraction, respectively.
doacetamide derivative of cysteine was specified as a
odification in Sequest and X! Tandem. The oxidation
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 MYC
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 n Exon Array RNA
 equencing (Library ID)
4
 Singl
 copy Bone
 arrow metastasis, relapse
 Yes
 Yes (HS0502)

4
 Singl
 copy Bone
 arrow metastasis, remission
 Yes (HS0499)
21 4
 Singl
 copy Bone
 arrow metastasis, relapse
 Yes
 Yes (HS1041)

12 4
 Singl
 copy Bone
 arrow metastasis, relapse
 Yes
 Yes (HS0382)

22 4
 Singl
 copy Bone
 arrow metastasis, relapse
 Yes
 Yes (HS0627)

R3 4
 Singl
 copy Bone
 arrow metastasis, relapse
 Yes
 Yes (HS1040)

L3 4
 Singl
 copy Bone
 arrow metastasis, relapse
 Yes
 Yes (HS1151)
4
 Amp
 ified Brain
 etastasis, relapse
 Yes

4 4
 Amp
 ified Bone
 arrow metastasis, diagnosis
 Yes
 Yes (HS1149)

4 4
 Amp
 ified Prima
 y tumor, postchemotherapy
 Yes (HS1241)
4
 Amp
 ified Bone
 arrow metastasis, relapse
 Yes (HS1593)

Norm
 l Singl
 copy Neura
 crest stem cell–like SKPs
 Yes (HS1042)

Norm
 l Singl
 copy Neura
 crest stem cell–like SKPs
 Yes (HS1043)

Norm
 l Singl
 copy Neura
 crest stem cell–like SKPs
 Yes (HS1150)

Norm
 l Singl
 copy Neura
 crest stem cell–like SKPs
 Yes
-P1 Norm
 l Singl
 copy Neura
 crest stem cell–like SKPs
 Yes

-P2 Norm
 l Singl
 copy Neura
 crest stem cell–like SKPs
 Yes
27 a e l

29 Normal Single copy Neural crest stem cell–like SKPs Yes
30 Normal Single copy Neural crest stem cell–like SKPs Yes
ariable modification. Pro-
ollowing criteria. At least
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eptides per protein were identified with a probability
old of 95% or greater as derived by the Peptide Prophet
hm (15) and an overall protein identity of >95.0% us-
e Protein Prophet algorithm (16).

rBlue assay
2, NB88R2, and FS283 were dissociated into single
nd seeded in triplicates at 3,000 cells per well in
medium containing 30% SKPs conditioned media
–tissue culture–treated 96-well plates (Corning Life

ces). AZD1152 (Selleck Chemicals LLC) was dis-
in dimethyl sulfoxide (DMSO) to a stock concen-

n of 50 mmol/L, from which 1:3 fold sequential
ons were prepared. Intermediate dilutions of the
ound were made in medium and immediately added
cells in a volume of 50 μL. Cells treated with 0.05%
in the absence of the drug were used as a control

timal cellular proliferation, whereas wells contain-
edia only were used to determine the background
scence; alamarBlue (10 μL) was added to each well
2 hours, followed by incubation for an additional
urs. Fluorescence intensity was measured using
Astar SpectraMax Plus384 microplate reader (BMG
h) with an excitation filter of 535 nm and an emis-
ilter of 590 nm. Percentage reduction of alamarBlue
alculated as ((mean fluorescence of treated wells -
round fluorescence)/(mean fluorescence of DMSO-
d wells - background fluorescence)) * 100. Half
al effective concentration (EC50) curveswere generated
GraphPad Prism 5 software (GraphPad Software, Inc.).

rn blotting
ls were harvested, washed with cold HBSS, and lysed
P40 lysis buffer containing 10 mmol/L Tris (pH
50 mmol/L NaCl, 10% glycerol, 1% Nonidet P-40,
ol/L phenylmethylsulfonylfluoride, 1 mmol/L ortho-
ate, and proteinase inhibitor cocktail tablet (Com-
Mini, EDTA-free, Roche). Cells were lysed for 10 to
nutes on ice and centrifuged for 10minutes at 12,000
t 4°C. Protein amounts were determined by BCA As-
ierce), and 40 μg of protein was loaded per lane.
rn blots were probed with rabbit polyclonal anti-
a B antibody (Abcam; ab2254) and anti–glyceralde-
-3-phosphate dehydrogenase (Santa Cruz; sc-47724)
dy in 5% w/v nonfat dry milk in TBS/0.1% Tween-
er night at 4°C. Blots were developed using ECL or
lus reagent (GE Healthcare Life Sciences).

hairpin RNA (shRNA) knockdowns
l lines were infected with either a mock treatment or
irus-encoding shRNAs of interest at a multiplicity of
on of 1.0. Seventy-two hours postinfection, the virus
moved, and cells were seeded in triplicate at a density
000 perwell in 24-well plates. The remaining cells were
or RNA isolation to determine the efficiency of knock-
by quantitative reverse transcriptase (qRT) PCR. Viable

mbersweredeterminedondays1, 3,5, and7postplating
oving cells fromwells and counting via hemocytometer.

down
and N
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lts and Discussion

sequencing of NB TICs reveals genes
rentially enriched or depleted in these cells
s have been identified and characterized in NB pri-
tumors and metastases, and have been shown to be
ated with tumor relapse (5). Genes whose expres-
s altered in NB TICs compared with normal equiva-
cells would thus provide potential targets for
tory and recurrent NB. To identify such genes, we se-
ed transcriptomes from 10 NB TIC lines isolated
tumors and metastases of six high-risk NB patients
1) using Illumina RNA sequencing (7, 8). The NB

nes used in this study included those isolated from
ts during disease relapse and one from a patient in
sion. Because we previously showed that line NB67
d from the bone marrow of a patient in clinical re-
n who subsequently relapsed was tumorigenic, we
ed this NB TIC line in the analysis (5). To generate
nce normal expression profiles, we sought a primary
n nontransformed or immortalized cell that would
sely as possible resemble the putative origin of NB
the human embryonic neural crest. SKPs are primary
mmortalized) human neural crest-derived precursor
that are resident in children and give increase in
e and in vivo to the same differentiated cell types as
yonic neural crest stem cells, including peripheral
ns, bone and cartilage, smooth muscle, and

ann cells (9). SKPs have a normal karyotype and
ltured under the same conditions as NB TICs; their
reference normal cells for the analysis of NB TICs

een reported (5). Therefore, for this comparative
riptome study, we also sequenced the transcriptomes
ee SKP lines from three children without cancer
osis (9).
used the LIMMA package to identify genes with
nce of differential expression between NB TICs
KPs. This analysis revealed 817 and 1,913 genes
increased or decreased in abundance in NB TICs
SKPs.
considered it likely that, within the list of differen-
expressed genes, there would be candidate NB TIC
rs and also transcripts generally associated with a
erative phenotype. Targeting gene products that are
ecifically expressed in proliferating cell types would
tially result in increased toxicity, particularly in chil-
hose organ systems are undergoing growth and de-

ment. To identify gene expression differences specific
TICs, we compared our NB TIC RNA sequences to
equencing data from 30 cancer samples available in
. These samples were derived from seven tissue
including ovary, lymph nodes, lung, blood, brain,
and cervix (Supplementary Table S1) and were in-
as an additional reference set for the identification

nscripts enriched specifically in NB TICs. Our analy-
vealed 449 and 1,059 genes were upregulated or

regulated in the comparison of NB TICs versus SKPs
B TICs versus other tissues, respectively.
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confirm the differential expression of candidate NB
riched transcripts identified using RNA sequencing,
alyzed eight NB TIC lines from five patients and five
nes from four cancer-free children (Table 1) using
etrix Human Exon 1.0 ST Arrays. This platform pro-
independent confirmation of gene expression at the
f exons (17, 18). Exon array analyses confirmed the
ntial expression of 321 (71%) and 819 (77%) genes
TICs compared to other tissues, respectively (Fig. 1;
ementary Table S2). These genes represented robust

NB TIC-enriched and depleted transcripts that we an-
further to identify the pathways disrupted in NB TICs.
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arison of transcripts differentially abundant in
Cs to known prognostic markers in NB
obust prognostic gene expression signature of 59
was recently developed using primary NB micro-
data sets and literature review; high expression levels
of the genes were associated with high-risk disease,
as high expression levels of 42 other genes were as-
ed with low-risk disease (19). We determined the
p of these gene lists with the lists of NB TIC-enriched
epleted transcripts we obtained as described above.

e 321 NB TIC-enriched genes, six (ODC1, MCM2,
, PAICS, CDCA5, BIRC5) were part of the 17-gene
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isk signature. On the other hand, none of the NB
riched genes were part of the 42-gene low-risk sig-
, supporting an association between NB TICs and
isk rather than low-risk disease. Moreover, three of
nes linked to low-risk disease (AKR1C1, PMP22, and
were detected among our list of 819NB TIC-depleted
Our analysis suggested that NB TIC expression pro-
re at least partially consistent with known molecular
es of primary NB tumors and that NB TICs therefore
tility as models of NB. On the other hand, because 9
NB TIC lines we examined were derived from metas-
ather than primary tumors, NB TIC gene expression
ure may differ substantially from that of primary
mors.

ted levels of BRCA1 signaling is a key systematic
expression aberration associated with
IC phenotype
assess the functional significance of transcripts dif-
ially abundant in NB TICs, we conducted a path-
nrichment analysis using the Ingenuity software
uity Systems). The analysis revealed several signal-
athways significantly upregulated in NB TICs (P <
including the BRCA1 DNA damage response path-
the mitotic role of pololike kinase pathway, the
f CHK proteins in cell cycle checkpoint control
ay, the cell cycle G2/M DNA damage checkpoint
tion pathway, and the ATM signaling pathway
2A). In contrast, the axonal guidance pathway,
XCR4 signaling pathway, the integrin-linked kinase
signaling pathway, the germ cell-sertoli cell junc-
ignaling pathway and the transforming growth fac-
signaling pathway were significantly downregulated
TICs compared with SKPs and the tissue pool

lementary Fig. S2). Of the 321 genes significantly
ulated in NB TICs, 13 were known members of
RCA1 DNA damage response pathway (Fig. 2B).
dition, eight genes were associated with pololike
and cell cycle checkpoint control pathways that are
downstream targets of BRCA1 signaling (Fig. 2B).
levated ATM expression level in the NB TICs could
ociated with the stem cell characteristics of these cells
se a recent study has found that ATM expression is
red for the proliferation of neural stem cells and
repair (20).
porting the notion that the BRCA1 pathway is a
ignaling cascade in NB, the BRCA1 pathway
ves the protein product of the BARD1 locus,
on variations in which have been linked to

ptibility to high-risk NB by a single nucleotide
orphism–based genomewide association study
In addition, a recent study reported that BRCA1
plex with BARD1 possesses ubiquitin ligase activ-

at can modify histones H2A and H2B, thereby
ng nucleosome dynamics (22). Our result is there-
onsistent with the notion that misregulation of the

1 pathway may contribute to genetic and epigenet-
rrations observed in high-risk NB (23).

analys
etopo
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IT analysis confirms the abundance of DNA
r proteins in the proteome of a NB TIC line
assess the contribution of the NB TIC-enriched genes
NB TIC proteome, we conducted a MudPIT analysis
f whole-cell lysate and a membrane-enriched frac-

of NB TIC line NB88R2 generated from a bone
w metastasis of a high-risk patient. The MudPIT
ach effectively identifies hundreds to thousands of
rrently expressed proteins for global or subcellular
on–specific proteomic profile analyses (24). The
IT analysis of the whole-cell lysate isolated from line
R2 cells revealed 819 proteins in which each protein
entified by at least two peptides. A similar analysis
fied 1,530 proteins in the membrane-enriched frac-
solated from the same line.
the 321 TIC-enriched genes, we identified in our
riptome analysis, 75 were detected by MudPIT in
whole-cell or membrane-enriched lysate of line

R2 or both (Supplementary Table S3). Forty-five of
etected proteins were products of genes that were
ssed in the 75% to 100% expression percentile in
B88R2 line, whereas only two protein products were
ed for genes expressed in the 0% to 24% expression
tile, showing a correlation between transcript abun-
and MudPIT analysis (Supplementary Fig. S2).

ty-one percent (16 of 75) of the detected proteins
associated with DNA replication, recombination,
epair functional category (Ingenuity Systems), in-
ng PARP1, PCNA, UBE2N, FEN1, HMGB2, and
which forms a major complex interacting with
1 (25). This result suggests a general correlation be-
the gene expression and protein level in at least one
C line.

n drug targets among NB TIC-enriched
cripts
ause the most direct pharmacologic intervention is
tion of a target protein (26), we focused further func-
analyses on genes upregulated rather than downregu-
in NB TICs with respect to SKPs and other tissues.
repositioning, in which existing drugs are used for
indications, is a powerful approach to novel therapy
pment because it greatly reduces the cost and time

red to clinically develop a new therapeutic option
We therefore aimed to use NB TIC-enriched genes to
fy targets of existing therapeutics with the concept
uch drugs could in the future be potentially effective
st recurrent NB. We applied the Ingenuity Pathways
sis tool to map the 321 NB TIC-enriched transcripts,
ll as their interacting partners, to known drugs. This
is revealed thirty known drug targets among the NB
nriched genes and their interacting partners defined
enuity Knowledge Base (bold type in Table 2 indi-
the NB TIC-enriched genes). Many of the predicted
argets have been explored preclinically or clinically
e treatment of NB (Table 2). Drugs predicted by our

is included both general chemotherapeutics, such as
side, becatecarin, doxorubicin, flavopiridol, and
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Functional analysis of NB TIC-enriched transcripts (A). Ingenuity Pathway Analysis was used to reveal canonical pathways significantly enriched
the upregulated genes (P < 0.05). The ratios of observed versus total numbers of genes in each pathway are plotted with the orange line, whereas the
of the blue columns are the significance scores for each pathway; significance threshold (P < 0.05) is marked by the vertical line. The pathway
“Role of BRCA1 in DNA damage response” was most significantly upregulated in NB TICs compared with SKPs and other tissues; pathway

rs upregulated in NB TICs are highlighted in red (B).
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stine, all of which, we coincidentally learned, are cur-
approved or in trials for NB, as well as targeted
such as BCL2 inhibitors, evaluated for the treatment
(28). Several agents predicted by our analysis, such
AC inhibitors and PARP inhibitors, have already
n promise in the management of chemotherapy-
nt NB (29, 30). In addition, our analysis predicted
and gene products targeted by existing drugs that
usly have not been implicated clinically as thera-
targets for high-risk NB. These molecules include

nuity Knowledge Base, or ClinicalTrials.gov; http://www.clinicaltr
B, ADORA2A, CXCL10, SLC1A4, COL14A1,
SF10B, ITGA2b, and IL6.

to NB
Auror
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ting downstream components of BRCA1
ling: inhibition of AURKB is selectively
xic to NB TICs
Aurora kinase family includes three serine/threonine
s involved in the control of the cell cycle. Aurora A
kinases have shown promise as anticancer agents
e treatment of solid tumors and leukemias (31).
ugh an Aurora A kinase inhibitor is in an ongoing
I/II clinical trial for NB (NCT00739427), Aurora B
inhibitors have not been investigated in relation

v/) are underlined.
2. Known
 ts among NB TIC-enriched genes
arget
A2A
 e-containing drugs, adenosine, istradefylline, dyphylline, binodenoson,

denoson, aminophylline, clofarabine, theophylline
B
 152
lline, nitroglycerin, aminophylline, anagrelide, milrinone,
ridamole, tolbutamide, theophylline, pentoxifylline

sine, plevitrexed, nolatrexed, capecitabine, floxuridine,

31514, 5-fluorouracil, trifluridine

abine phosphate

tabine

abine phosphate, gemcitabine, clofarabine

e, hydroxyurea, fludarabine phosphate, gemcitabine
1
 01

514
bine, gemcitabine, clofarabine, trifluridine
iocin, CPI-0004Na, pixantrone, elsamitrucin, AQ4N, BN 80927, tafluposide, norfloxacin,

azamine, TAS-103, gatifloxacin, valrubicin, gemifloxacin, nemorubicin, nalidixic acid epirubicin,

norubicin, etoposide, doxorubicin, moxifloxacin, becatecarin, mitoxantrone, dexrazoxane

rsen, (-)-gossypol, obatoclax, G3139
4
 le

tene, eflornithine

umab

zumab, BMS-599626, ARRY-334543, XL647, CP-724,714, HKI-272, lapatinib, erlotinib
1
 rin, PXD101, pyroxamide, MGCD0103, FR 901228, vorinostat

B
 mab, TP 9201, eptifibatide, tirofiban
umab, infliximab, CDP870, golimumab, thalidomide, etanercept

steroid-containing drugs (beclomethasone dipropionate)
0
 100
63L
cine/probenecid, XRP9881, E7389, AL 108, EC145, NPI-2358, milataxel, TTI-237,
C

unine, podophyllotoxin, colchicine, epothilone B, TPI 287, docetaxel,

relbine, vincristine, vinblastine, paclitaxel, ixabepilone

iridol
A1
 enase

F10B
 08
RS CS-10

Dasatinib
D δ-Aminolevulinic acid

E: Transcripts enriched in NB TICs are in bold, and drugs previously or currently used in NB (based on literature review,
. A recent report suggested a direct link between
a B kinase and BARD1, a key component of the
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1 signaling pathway that is also associated with
tibility to NB (32). That report, together with
errant expression of the BRCA1/BARD1 pathway
ed in our study, provided a rationale for exploring

tiproliferative potential of Aurora B kinase inhibi- NB88

evealed that AURKB inhibition with AZD1152 was effective in NB TICs at EC50
s at 12.4 μmol/L.

ancer Res; 16(18) September 15, 2010

Research. 
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assess whether elevated mRNA levels at the AURKB
in NB TICs corresponded to increased levels of
B protein, we did Western blot analysis using
e-cell lysates from three NB TIC lines (NB12,

R2, and NB122R) and two SKP lines (FS274 and
NB TICs. FS227). This analysis revealed a strong presence of the

NB TICs are sensitive to Aurora B kinase inhibition. A, Western blot analysis confirmed the presence of AURKB protein in NB TICs but not SKPs.
, shRNA knockdown of AURKB reduces the proliferation of NB TICs. Growth curves of NB TICs infected with shRNA against AURKB or

s are in B, quantitative reverse transcriptase PCR was used to determine the effectiveness of AURKB knockdown (76-86%) in C. D, the alamarBlue

of 1.5 to 4.6 μmol/L, whereas AURKB inhibition was effective
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B protein in NB TICs but detected no protein in
supporting the gene expression result (Fig. 3A). To
urther insight into the role of AURKB in controling
C proliferation, we performed shRNA knockdown
ments in NB TIC lines NB12 and NB88R2. NB TICs
ed with lentiviruses encoding two separate shRNAs
RKB showed 77% to 80% growth reduction com-
with NB TICs infected with lentiviruses carrying mock
As to green fluorescent protein or β-galactosidase
B and C). The observed reduction in proliferation
ing AURKB knockdowns supports the premise
URKB signaling is important for the viability of NB

assess whether pharmacologic inhibition of AURKB
have the same effect on NB TIC proliferation as the
B knockdowns done above, we used AZD1152, a
ive AURKB inhibitor that is currently undergoing
I/II testing in patients with acute myelogenous leu-
a (NCT00497991). NB TIC lines (NB12 and
R2), as well as FS283 SKP line, were treated with
ge of AZD1152 concentrations, and cell growth
ssessed 96 hours later using alamarBlue reduction
s a read-out of cellular metabolic activity. As shown
. 3D, proliferation of NB TICs is reduced following
tion of AURKB, showing low micromolar EC50 va-
1.5-4.6 μmol/L). In contrast to this, SKPs were less
ive to AZD1152, exhibiting higher EC50 values
μmol/L). The selective activity of AZD1152 in NB
which is likely due to the differential protein abun-
in NB TICs compared with SKPs, provides a foun-
for further exploring AURKB as a drug target for

ric NB. Our work provides the first high-resolution

-level analysis of NB TICs and a proof of principle Rece
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xic to these cells while sparing their normal stem
unterparts. The apparent selectivity of AURKB inhi-
is particularly important in pediatric oncology as a
f normal stem cells must be maintained for proper
pment.
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Correction

Correction: Systems-Level Analysis of
Neuroblastoma Tumor-Initiating Cells
Implicates AURKB as a Novel Drug Target for
Neuroblastoma

In this article (Clin Cancer Res 2010;16:4572–82), which was published in the
September 15, 2010, issue of Clinical Cancer Research (1), there was an error in
Table 1. The data in the Description column for the NB121 row should read: Bone
marrow metastasis, diagnosis.
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