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Neurofibromin interacts with the cytoplasmic Dynein Heavy
Chain 1 in melanosomes of human melanocytes
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Neurofibromin (NF1) is encoded by the NF1 tumour suppressor gene. Mutations result in a disorder
known as Neurofibromatosis Type 1 (NF-1), and patients are often diagnosed due to the presence of
unusual pigmentary patterns that include Café au lait macules (CALMs). Little is known about how
loss of NF1 results in pigmentary defects in melanocytes. We sought to identify novel NF1 interact-
ing proteins and elucidate the molecular mechanisms underlying the pigmentary defects. The cyto-
plasmic Dynein Heavy Chain 1 (DHC) was found to interact with NF1 along microtubules in vesicular
structures identified to be melanosomes. Our studies suggest that NF1 is involved in melanosomal
localization, and that disruptions in NF1–DHC interactions may contribute to the abnormal pigmen-
tary features commonly associated with this debilitating syndrome.

Structured summary of protein interactions:
NF1 physically interacts with DHC by anti bait coimmunoprecipitation (View interaction)

� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

The Neurofibromatosis Type 1 (NF-1) tumor predisposing syn-
drome has a birth incidence of 1:3000 and is the most common
autosomal disorder of the nervous system in humans [1]. This syn-
drome is characterized by disorders that primarily affect cells of
neural crest origin, with a number of pleiotropic manifestations
that include learning disabilities, spinal abnormalities, Café au lait
macules (CALMs), Lisch nodules, optic gliomas, benign tumours of
the peripheral nervous system (neurofibromas) and malignant
peripheral nerve sheath tumours (MPNSTs) [1]. This multisystem
disorder occurs due to the deletions and loss of function mutations
in the Neurofibromin tumour suppressor gene (NF1).The most
extensively studied function of NF1 pertains to its Ras GTPase Acti-
vating Protein (RasGAP) function, mediated by the GAP Related Do-
main (GRD). The GRD accelerates the intrinsic activity of Ras-
GTPase, resulting in the conversion of Ras-GTP to the inactive
Ras-GDP state [2]. Loss of NF1 subsequently results in an accumu-
lation of Ras-GTP that drives cell survival, proliferation and neo-
plastic transformation.

However, many of the manifestations of NF-1 cannot be attrib-
uted to its function through the GRD, and studies elucidating the
role of other domains and their novel interacting proteins have en-
hanced our understanding of the pleiotropic effects of NF-1. The
Tubulin Binding Domain (TBD) interacts with microtubules (MT),
and this association has been demonstrated to impact the RasGAP
activity of NF1 [3]. The Syndecan1 and Syndecan2 domains are
proposed to function in the localization of NF1 to syndecan con-
taining microdomains in the plasma membrane [4]. The C-terminal
Domain interacts with 14-3-3g in a PKA phosphorylation depen-
dent manner and inhibits NF1 GAP activity [5]. Kinesin-1 has been
identified through size-exclusion chromatography experiments
and mass spectrometry as a binding partner of a NF1 containing
complex [6]. NF1 has also been reported to interact with the Amy-
loid Precursor Protein (APP) with a proposed functional relevance
in the intracellular transport of melanosomes in melanocytes,
which could be a potential pathological mechanism for CALM for-
mation [7]. As we identify additional interacting partners and
delineate their regulatory interplay with NF1, we will gain insight
into novel functions and signaling mechanisms which may help us
understand the non-neoplastic phenotypes associated with NF-1.
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Fig. 1. DHC interacts with the Tubulin Binding Domain of NF1. (A) DHC forms a
complex with NF1. Endogenous DHC from normal human melanocyte cell lysate
was immunoprecipitated (IP), subjected to SDS PAGE and probed with anti-NF1
(lane 2). Immunoprecipitation with anti-NF1 and probe with anti-DHC (lane 3). No
non-specific bands were observed when lysates were immunoprecipitated with IgG
alone (lane 4). (B) Schema of NF1 domains used in the GST pull-down analysis. The
CSRD: Cysteine/Serine Rich Domain, TBD: Tubulin Binding Domain, Sec14: Sec14p
Homology Domain and CTD: C-terminal Domain of NF1 were cloned into GST-
tagged vectors. (C) DHC interacts with only the TBD and not other NF1 domains.
GST pull-down of CSRD, TBD, Sec14 and CTD after incubation with whole cell lysate,
followed by western blot analysis with anti-DHC.
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To identify novel melanocyte-specific NF1 interacting proteins,
we performed NF1 immunoprecipitations (IP) from melanocytes
coupled with Mass Spectroscopy (MS). The cytoplasmic Dynein
Heavy Chain1 (DHC) was found to interact with NF1, and to be in-
volved in the correct localization of melanosomes along microtu-
bules in melanocytes. This finding may provide valuable insight
into the etiopathogenesis of CALMs, which are one of the most fre-
quent manifestations of NF-1 [8].

2. Materials and methods

2.1. Cell culture, transfection and drug treatments

Normal human melanocytes (foreskin-derived) were grown in
DMEM supplemented with 10% FBS and incubated at 37 �C with
5% CO2. For transfections, Lipofectamine X (Invitrogen) was used
in accordance with manufacturer’s instructions. 0.5 lg of NF1
and scrambled shRNAs were used per 1.5 � 105 cells and main-
tained for 72 h prior to functional studies. For drug studies, cells
were serum starved for 18 h and first treated with 2 lM MSH for
1 h, washed and then treated with 1 lM Melatonin for 30 min,
and vice versa.

2.2. Expression and purification of GST and His fusion proteins

BL21(DE3) Escherichia coli cells were transformed with the NF1
GST constructs, grown overnight at 37 �C and induced with 0.5 mM
IPTG for 3 h. The fusion proteins were purified by affinity chroma-
tography with Glutathione Sepharose 4B (Amersham Biosciences)
in accordance with the manufacturer’s protocol.

2.3. Mass spectrometry (MS)

Protein-containing bands were in-gel digested with modified
trypsin (Promega) to extract peptides from the gel. Trypsin was
also used for gel-free digestion of IP protein products. Samples
were subjected to LC/MS analysis at the Advanced Protein Technol-
ogy Centre (Toronto, Canada).

2.4. Immunoprecipitation immunoblotting and immunofluorescence
analyses

Antibodies used were: NF1 (Rabbit polyclonal (sc-67), Santa
Cruz Biotechnology) and NF1 (Mouse monoclonal (McNFn27b),
Santa Cruz Biotechnology). a-tubulin (Rabbit monoclonal
(11H10), Cell Signaling Technology), kinesin-1 (Rabbit monoclonal
(K1014), Sigma), Dynein Heavy Chain (Mouse monoclonal, Sigma)
and Normal rabbit IgG (sc-2027, Santa Cruz Biotechnology). The
IPs and IFs were performed as described [9].

2.5. Proximity ligation assay

The assay was performed as described in Soderberg et al. [10].
Briefly, fixed (4% PFA) and permeabilized cells were incubated with
primary NF1 and DHC, or NF1 and kinesin-1 antibodies overnight
at 4 �C, washed, and further incubated with secondary antibodies
with attached DNA strands as proximity probes for 1 h in a humid-
ified 37 �C chamber. After hybridization and ligation of the DNA
oligonucleotides, amplification solution along with polymerase
was added which resulted in a rolling-circle-amplification (RCA)
reaction. The concatemeric product was detected using compli-
mentary fluorescently labeled oligonucleotides. Imaging was per-
formed with a Zeiss Axiovert 200 microscope equipped with a
Hamamatsu Orca AG CCD camera and a spinning disk confocal scan
head. The brightness of images was increased for presentation.
Details of statistical and image analysis have been described previ-
ously [9].

3. Results

3.1. Identification of DHC as a novel NF1–TBD interacting protein in
human melanocytes

An immunoprecipitation–Mass spectroscopy (MS) screen using
NF1 antibody incubated with normal human melanocyte lysate
identified DHC, a component of the Dynein motor protein complex.
This interaction was validated by NF1 immunoprecipitation fol-
lowed by western blot analysis (WB) with DHC antibody. Immuno-
precipitation with DHC antibody followed by western blotting with
NF1 antibody confirmed that the two proteins formed complexes
in vitro, while there was no non-specific interaction with the IgG
negative control (Fig. 1A). To identify the domain of NF1 that medi-
ates this interaction, we constructed GST-tagged NF1 domains
(Cysteine/Serine Rich Domain – CSRD, Tubulin Binding Domain –
TBD, Sec14p homology domain – Sec14 and Carboxy-Terminal Do-
main – CTD (Fig. 1B), and incubated these proteins with lysate
from normal human melanocytes. The bound proteins were eluted
and subjected to western blot analysis using DHC antibody. Only
the NF1–TBD interacted with DHC, suggesting that this domain
mediates the interaction (Fig. 1C).

The Dynein motor protein complex is involved in microtubule-
dependent, retrograde transport in a number of cellular processes
including mitosis, and transport of vesicles, melanosomes and
mitochondria [11–13]. While the finding that DHC is a potential
interacting protein is novel, kinesin-1, an evolutionarily unrelated
anterograde microtubule-associated motor protein, has been re-
ported to interact with a NF1 containing complex [6], which
emphasizes a possible role of NF1 as part of a complex involved
in the transport of cargo along MTs.
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3.2. NF1 interacts with DHC along microtubules in normal human
melanocytes

To confirm that NF1 colocalizes with DHC in situ, we performed
immunoflourescence and confocal microscopy studies with anti-
Fig. 2. NF1 interacts with DHC along microtubules in normal human melanocytes. (A) Con
anti-DHC of endogenous NF1 and DHC in normal human melanocytes in the perinuclear r
tips. Mander’s correlation coefficient (R) for NF1-DHC double immunoflourescence = 0.9
tubulin reveals that the NF1–DHC interaction sites, as indicated by the red PLA signals, oc
R = 0.74 ± 0.02, n = 20.
bodies to NF1 and DHC. NF1 and DHC colocalized significantly
throughout the cells with high intensity staining in the perinuclear
area and with punctate distribution in the tips of melanocytes
(Fig. 2A). A similar distribution and overlap was found for NF1
and kinesin-1 (Supplementary Fig. 1A).
focal fluorescence images showing intracellular immunostaining with anti-NF1 and
egion and cell periphery. Arrowheads indicate vesicular co-immunostaining at distal
5 ± 0.02, n = 20. (B) PLA for NF1 and DHC coupled with immunofluorescence for a-
curs predominantly along MTs as indicated by arrowheads in the magnified images.
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Since DHC transports cargo along MTs, and NF1 is also known to
colocalize with tubulin, we performed the Proximity Ligation Assay
(PLA) for NF1 and DHC to evaluate whether these two proteins
interact in situ. The NF1–DHC PLA reaction was coupled with an
IF for a-tubulin to ascertain whether NF1 and DHC interact along
MTs as this would provide further insight into the functional rele-
vance of this interaction. As shown in Fig. 2B, NF1 and DHC interact
along MTs as represented by the red PLA signals. To further query
whether the NF1–kinesin-1 interaction also occurs in melanocytes
along MTs, we repeated the PLA to visualize sites of NF1–kinesin-1
interaction, and coupled this with an IF for a-tubulin (Supplemen-
Fig. 3. NF1, DHC and kinesin-1 colocalize with melanosomes. (A) NF1 immunoflourescen
melanosome. R = 0.92 ± 0.04, n = 20. (B) A double IF for DHC and NK1/beteb also demonstr
also significantly overlaps with melanosomes. R = 0.94 ± 0.04, n = 20.
tary Fig. 1B). As previously reported [6], NF1 and kinesin-1 interact
along MTs. The interaction of NF1 with the two MT-dependent mo-
tor proteins supports our hypothesis of a role of NF1 in intracellu-
lar trafficking of cargo.

3.3. NF1 interacts with DHC in melanosomes

To identify the structures that NF1 and DHC colocalize with, we
performed immunofluorescence with a monoclonal antibody
against NK1/beteb, a melanosome marker and antibody to NF1.
NF1 immunofluorescence colocalized with the melanosome mar-
ce coupled with IF for NK1/beteb reveals the NF1-stained vesicular structures to be
ates that this retrograde motor protein colocalizes with melanosomes. (C) Kinesin-1
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ker in the perinuclear area and more distinctly in the distal tips,
with both antibodies showing a punctate, granular pattern
(Fig. 3A). Since DHC functions in retrograde cargo transport, we
co-stained melanocytes with DHC and NK1/beteb, and observed
overlapping signals (Fig. 3B). A similar overlap was also observed
using antibodies to kinesin-1 and NK1/beteb, confirming that the
vesicular structures were melanosomes (Fig. 3C) [14].

Having demonstrated the colocalization of NF1, kinesin-1 and
DHC in melanosomes, we further performed the PLA to confirm
Fig. 4. NF1 interacts with DHC and kinesin-1 in melanosomes. (A) PLA for NF1 and DHC c
proteins interact in melanosomes. R = 0.81 ± 0.05, n = 20. (B) NF1 and kinesin-1 also inte
positive vesicular structures. R = 0.78 ± 0.04, n = 20. All scale bars correspond to 10 lm.
whether NF1 specifically interacts with the two motor proteins
in melanosomes. A combination of NF1–DHC PLA along with
NK1/beteb immunoflouresence revealed significant overlap of
the two signals in the perinuclear area and more discretely in the
distal tips, confirming that melanosomes are the structures where-
in NF1 interacts with DHC (Fig. 4A). A lower number of NF1–kine-
sin-1 PLA signals colocalized with melanosomes, but nonetheless
confirmed that NF1 and kinesin-1 also interact in this organelle
(Fig. 4B).
oupled with immunofluorescence with anti-NK1/beteb demonstrates that these two
ract in melanosomes as visualized by the presence of the PLA signals in NK1/beteb-
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3.4. NF1 plays a functional role in melanosome localization

NF1 has been suggested to play a role in melanosome distribu-
tion [7]. We therefore asked about the functional importance of the
NF1-DHC interaction in human melanocytes in the context of mel-
anosome localization. Since NF1 has been reported to be present on
the melanosomal membrane [7,15], our findings suggest NF1 may
be an adaptor between melanosomes and motor proteins, and that
loss of NF1 may result in aberrant formation of the melanosome
Fig. 5. Loss of NF1 results in altered melanosome localization. (A) Cells were transfected
followed by 2 lM MSH for 1 h (i and ii), or incubated with 2 lM MSH for 1 h followed b
NK1/beteb to visualize melanosome distribution. The green signal of melanosomes over
melanosomes within individual melanocytes.The nucleus is pseudo-coloured white. ‘⁄’ i
indicates the nucleus of the cell. (B)The Intensity Plot Profile (IPP) quantifies the vertically
of the image (x-axis). The IPP of (i) and(ii) reflects melanosome distribution in the perin
distal localization of melanosomes. In (iii) and (iv), the final treatment is with melatonin
(iii), melanosomes remain dispersed. (C) Quantification of the percentage of cells with
different drug treatment strategies in (A and B). Error bars represent the S.D. Three biol
paired two-tailed t test significance value for NF1 shRNA compared to Scrambled shRNA
transport complex. To investigate the functional relevance of the
loss of NF1 on melanosome localization we used an NF1-specific
shRNA approach to knockdown (KD) NF1 in normal human mela-
nocytes. Scrambled shRNA was used as a negative control (Supple-
mentary Fig. 2). The shRNA constructs also encode Red Fluorescent
Protein (RFP) that allowed for visualization of shRNA-transfected
cells. NF1 KD and control cells were treated with melatonin which
induces perinuclear aggregation of melanosomes, and with Mela-
nocyte Stimulating Hormone (MSH) which induces anterograde
with NF1 shRNA or scrambled shRNA, stimulated with 1 lM melatonin for 30 min
y 1 lM melatonin for 30 min (iii and iv). The cells were then fixed and stained with
lays with the RFP to produce a strong yellow signal indicative of the localization of
ndicates the left-most tip of the cell, ‘⁄⁄’ indicates the right-most extremity and ‘H’

averaged (y-axis column average plot) pixel intensity along the horizontal distance
uclear area and the cell periphery. NF1 loss did not affect the kinesin-1-dependent,
which normally results in perinuclear aggregation as seen in (iv), but in NF1 KD cells

perinuclear aggregation vs. dispersed distribution of melanosomes from the two
ogical replicates were performed of which the average is plotted in the graph. The
is 0.01. Scale bars correspond to 10 lm.
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movement of melanosomes away from the perinuclear area to the
distal tips [16]. NF1 shRNA or scrambled shRNA-transfected cells
were first treated with 1 lM Melatonin for 30 min, and then with
2 lM MSH for 1 h. This treatment resulted in an expected melano-
some distribution in the perinuclear area and also in the cell
periphery (Fig. 5A, i and ii). However, a significant difference was
noted in melanosome distribution in the NF1 KD cells when they
were first treated with MSH and then treated with melatonin
(Fig. 5A, iii and iv). While scrambled shRNA-transfected cells
exhibited an aggregation of melanosomes in the perinuclear region
and not towards the distal tips (Fig. 5B, iv), NF1 shRNA-transfected
melanocytes showed high central melanosomal concentration
while retaining distal distribution (Fig. 5B iii). This difference was
significant compared to scrambled shRNA-transfected controls
(P = 0.010) (Fig. 5C).Our findings suggest that melanosomes in
NF1�/� cells are unable to translocate away from the cell periph-
ery even upon high concentrations of Melatonin treatment, possi-
bly due to their inability to associate with the dynein motor
protein complex in the absence of NF1.

4. Discussion

There are reports of distinct aberrations in melanosome size
and distribution in melanocytes derived from NF-1 patients, but
the underlying pathophysiological mechanisms are as yet unclear.
One study has reported that melanocytes from NF-1 patients con-
tain enlarged melanin granules called macromelanosomes [17]
which are present in both CALM and non-CALM derived melano-
cytes [18,19]. Kaufmann et al. [20] have also shown by means of
in vitro studies that NF1 defects affect melanogenesis in NF-1-de-
rived epidermal melanocytes. While the presence of these melanin
macroglobules [21] explain the observation that the skin of NF-1
patients is more pigmented than that of their unaffected siblings
[22], it does not explain the hyperpigmentation present only in
CALM melanocytes.

Owing to the important role of NF1 in the regulation of Ras sig-
naling, a key pathway in cells that mediates mitogenic signaling,
there has been speculation that aberrant Ras activation in melano-
cytes may underlie the increased melanogenesis and melanosome
density observed in CALM-derived melanocytes. It was found,
however, that the Ras–GTP levels in NF-1 melanocytes were simi-
lar to those of normal skin from healthy donors, excluding aberrant
Ras signaling as a causative factor [23]. Since formation of these
hyperpigmented, localized skin lesions must be attributed to regu-
latory mechanisms of NF1 unrelated to Ras, we asked whether we
could identify novel NF1–protein interactions in melanocytes as it
may relate to pigmentation.

For the first time we demonstrate an interaction between NF1
and DHC in melanocytes. Using a combination of techniques such
as PLA combined with immunofluorescence, we showed that this
interaction occurred along MTs and colocalized with melano-
somes. Pigmentation is dependent on melanosome relocalization
from the area of synthesis in the perinucleus to the distal extrem-
ities, and melanosomes are trafficked by motor proteins along MTs
in a bidirectional manner. The anterograde movement of melano-
somes has been shown to be driven by members of the kinesin mo-
tor protein family [14,24], while retrograde movement is carried
out by the Dynein motor protein complex. Dynein is essential in
regulating centripetal movement of melanosomes by countering
the activity of kinesin-1, thus preventing an aberrant accumulation
of melanosomes in the distal extremities of the melanocytes [25].
Drawing upon this important function of dynein, we hypothesize
that loss of NF1, and subsequently loss of the NF1–DHC interaction,
results in aberrant retrograde trafficking of melanosomes resulting
in mislocalization to the distal tips.
Functional studies revealed that suppression of NF1 levels in
melanocytes results in increased intensity of NK1/beteb immuno-
staining, particularly in the nuclear region of the cell, possibly ow-
ing to aberrant melanogenesis and macromelanosome formation.
This was coupled with a dispersed distribution of melanosomes
even upon treatment with Melatonin, which aggregated melano-
somes towards the perinuclear area in untransfected and scram-
bled shRNA-transfected cells. Skin pigmentation is dictated by
the density of melanosomes present in melanocytic dendrites
which are then transferred to neighbouring keratinocytes for dis-
tribution to the upper layers of the epidermis [17,26]. This is a
key mechanism that is thought to underlie complexion colouration
in a number of hypopigmentation abnormalities including nevus
depigmentosis [27] and Griscelli–Prunieras disease [28] where
the melanocytes have irregular or short dendritic formation, and
reduced melanosomes in keratinocytes. It is also suggested that
the hypopigmented lesions in tuberous sclerosis occur due to dis-
rupted melanosome transfer to keratinocytes [29].

Regarding the hyperpigmentation end of the spectrum, Nevus
spilus is a skin lesion that resembles CALMs and electron micro-
scopic observations by Takahasi [19] revealed a higher number of
melanosomes in keratinocytes possibly due to increased transfer
from melanocytes and/or decreased degradation in keratinocytes.
Similar studies were conducted in NF-1 CALMs with the supposi-
tion being that melanocytes transfer a higher number of melano-
somes into keratinocytes [19]. Findings from our studies add to
the proposed model by suggesting thatNF1 loss results in increased
aberrant localization of melanosomes to the distal tips of melano-
cytes, thus increasing their availability for exocytosis into kertino-
cytes, where they accumulate to cause increased pigmentation of
the skin.

We further speculate this novel function of NF1 in DHC-medi-
ated trafficking of melanosomes to be haplo-sufficient for NF1 as
the hyperpigmentation defects are observed only in CALMs and
not in non-lesional melanocytes. While previous findings by De
Schepper et al. [30] led to the conclusion that CALM melanocytes
possess the second NF1 allele in all NF-1 patients in their study,
an important caveat was that somatic intragenic mutations were
not queried. In light of the findings by Eisenbarth et al. [31] who
demonstrated that CALMs do indeed have a higher frequency of
second hit mutations for NF1 in melanocytes compared to kerati-
nocytes (P = 0.018) or fibroblasts (P = 0.000), we are able to con-
clude that CALM melanocytes are indeed NF1�/�, and hence
manifest the pigmentary aberrancies while the NF1+/� non-CALM
cells do not.

We further speculate that loss of function of NF1 in microtu-
bule-dependent motor protein-driven localization of cargo may
underlie some of the other phenotypic manifestations observed
in Neurofibromatosis Type 1. Arun et al. [9]demonstrate that NF1
is also part of RNA granule complexes, which are ribonucleoprotein
particles that are transported by motor proteins along microtu-
bules, and that regulate protein synthesis in a temporal and spatial
manner. Aberrant localization of mRNAs contained within these
granules in neurons and Schwann cells have been shown to under-
lie the cognitive deficits in the Fragile X mental retardation syn-
drome and peripheral neuropathy in a mouse model of motor
dysfunction, respectively [32,33].

Thus, our demonstration of a novel NF1–DHC interaction re-
veals a novel function of NF1. Experimental findings indicate a
functional role in melanosome localization which sheds insight
into a possible molecular mechanism underlying CALM formation.
Further exploration of this new avenue will yield fruitful in our
understanding of the etiopathogenesis of other manifestations
associated with Neurofibromatosis Type 1 including motor deficits
and learning disabilities.
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