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Conditional ablation of p63 indicates
that it is essential for embryonic development

of the central nervous system
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p63 is a member of the p53 family that regulates the survival of neural precursors in the adult brain. However, the
relative importance of p63 in the developing brain is still unclear, since embryonic p63¡/¡ mice display no apparent
deficits in neural development. Here, we have used a more definitive conditional knockout mouse approach to address
this issue, crossing p63fl/fl mice to mice carrying a nestin-CreERT2 transgene that drives inducible recombination in
neural precursors following tamoxifen treatment. Inducible ablation of p63 following tamoxifen treatment of mice on
embryonic day 12 resulted in highly perturbed forebrain morphology including a thinner cortex and enlarged lateral
ventricles 3 d later. While the normal cortical layers were still present following acute p63 ablation, cortical precursors
and neurons were both reduced in number due to widespread cellular apoptosis. This apoptosis was cell-autonomous,
since it also occurred when p63 was inducibly ablated in primary cultured cortical precursors. Finally, we demonstrate
increased expression of the mRNA encoding another p53 family member, DNp73, in cortical precursors of p63¡/¡ but
not tamoxifen-treated p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø embryos. Since DNp73 promotes cell survival, then this
compensatory increase likely explains the lack of an embryonic brain phenotype in p63¡/¡ mice. Thus, p63 plays a key
prosurvival role in the developing mammalian brain.

Introduction

The p53 family consists of p53 and the closely-related pro-
teins p63 and p73. While p53 is best-known for its role as a
tumor suppressor, p63 and p73 play prominent roles during
development of organisms ranging from C. elegans to mammals.
This is best exemplified by studies of mice lacking the different
family members. Mice lacking p53 are predisposed to tumors,
but are largely viable,1,2 although a subset of p53¡/¡ embryos do
exhibit exencephaly.3 In contrast, p63¡/¡ mice are not viable
postnatally, and display profound deficits in limb and skin mor-
phogenesis.4,5 Some p73¡/¡ mice survive to adulthood, but most
die within the first few postnatal weeks, due to deficits in the
immune and nervous systems.6 Analyses of mice carrying floxed
and isoform-specific alleles of p63 and p73 have demonstrated
that at least some of these deficits are due to important roles for
these 2 proteins in tissue-specific stem cell populations.7-17 Thus,
the highly homologous p53 family members play important but
distinct roles during development.

p63 and p73 mediate their biological effects as 2 major classes
of isoforms generated by alternative promoter usage. The full-
length isoforms contain an N-terminal transactivation (TA)
domain that is necessary for transcription, while the truncated DN
isoforms lack the TA domain and function, at least in part, as
dominant-negative proteins that inhibit their full-length counter-
parts either by forming inactive tetramers or by competing for pro-
moter binding sites.18 These 2 classes of isoforms are thought to
play different roles in development, with the TA isoforms acting
like p53 to regulate proliferation, maintain genome integrity, reg-
ulate cell metabolism and induce apoptosis, and the DN isoforms
acting to promote cell survival and suppress senescence.18,19

Numerous studies indicate that p73 is a key protein in both
the developing and adult nervous systems. The DNp73 isoforms
are essential for survival of peripheral sympathetic and sensory
neurons20-22 and cortical neurons.19,23 The full-length TAp73
isoforms regulate hippocampal development and self-renewal of
neural stem cells, and differentiation and synaptogenesis of PNS
and CNS neurons.6,24-30 Analysis of mice haploinsufficient for
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all isoforms of p73 have also implicated this protein in neural
precursor senescence31 and neurodegeneration.32-34

Like p73, p63 is an important regulator of cell survival in the
postnatal nervous system, where it regulates survival of peripheral
neurons.35 Moreover, we recently showed that haploinsufficiency
or conditional acute ablation of p63 in the adult nervous system
caused the death of adult neural precursors by activation of a pro-
apoptotic p53-PUMA pathway, thereby causing deficits in hippo-
campal-dependent memory formation.36 However, it is still
unclear whether p63 plays a role in the developing brain, since dif-
ferent approaches have led to different conclusions. In our own
work, we showed that acute knockdown or knockout of p63 in
embryonic cortical precursors using in utero electroporation
caused precursor death via a p53-dependent pathway,37 results
very similar to what we reported for adult neural precursors.31,36

In contrast, a second study examined the embryonic forebrain of

p63¡/¡ mice and concluded that there were no deficits in neural
development when p63 was constitutively ablated.38

Here, we have tested the hypothesis that p63 is important for
embryonic brain development using a more definitive approach.
Specifically, we inducibly ablated p63 in embryonic neural precur-
sors of p63fl/fl mice with a tamoxifen-dependent nestin-CreERT2
driver line. Using this approach, we report that acute ablation of
p63 leads to a robust increase in the death of neural precursors of
the embryonic cortex, thereby causing cortical thinning, ventricu-
lar enlargement, and decreased numbers of embryonic cortical
precursors and neurons. Moreover, we confirm, as previously pub-
lished,38 that there is no difference in the number of neural precur-
sors in cortices of p63¡/¡ and p63C/C embryos. However, we also
show that DNp73 mRNA is specifically upregulated in p63¡/¡

cortical precursors, suggesting that the lack of an embryonic neural
phenotype in p63¡/¡ mice is likely due to compensatory survival-

promoting mechanisms that occur
within a constitutive knockout back-
ground. Thus, as we previously con-
cluded using in utero electroporation,37

p63 is an important prosurvival protein
during embryonic neural development.

Results

Acute conditional deletion of p63 in
embryonic neural precursors perturbs
forebrain morphogenesis

To ask whether p63 plays a role dur-
ing embryonic murine brain develop-
ment, we crossed p63fl/fl mice to mice
carrying a nestin-CreERT2 driver that
efficiently promotes recombination of
floxed genes in embryonic forebrain
neural precursors following tamoxifen
treatment.39 These p63fl/fl;nestin-
CreERT2C/Ø mice were also crossed to
mice carrying a floxed YFP reporter gene
in the Rosa26 locus (R26YFPfl/fl),
thereby allowing us to monitor tamoxi-
fen-induced recombination by expres-
sion of YFP. We previously used the
resultant p63fl/fl;R26YFPfl/fl;nestin-
CreERT2C/Ø mouse to inducibly ablate
p63 postnatally, and showed that it was
essential for the survival of adult neural
precursors and adult-born neurons.36

To ask about p63’s developmental role,
we focused on the embryonic cortex,
where neurogenesis is ongoing from
approximately embryonic day 12 (E12)
to E18. Specifically, we treated pregnant
mothers with a single intraperitoneal
tamoxifen injection at E12 and analyzed
coronal sections through the cortex 3 d

Figure 1. Acute inducible ablation of p63 in developing neural precursors alters embryonic forebrain
morphology. (A) Schematic showing the experimental approach. p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/

Ø(p63WT) or p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX) embryos were exposed to tamoxifen
(TMX, injected into their mothers) at E12, and then their brains were analyzed 3 d later at E15. (B) Rep-
resentative images of coronal sections through the forebrain of tamoxifen-treated p63wt/wt;R26YFPfl/fl;
nestin-CreERT2C/Ø (p63WT, left panels) or p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX, right panel)
embryos immunostained for YFP to detect expression of the recombined reporter gene. The boxed
areas are shown at higher magnification in the insets, and arrows denote positive cells in the ventricu-
lar zone. The cortex (Ctx), ganglionic eminences (GE) and lateral ventricles (LV) are all denoted. Note
that the YFP is present in the processes of precursors and neurons and thus the cortical layers are not
easily distinguished. Scale bar D 200 mm. (C-E) Representative images of coronal sections through
the forebrain of p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/Ø (p63WT, left panels) or p63fl/fl;R26YFPfl/fl;nestin-
CreERT2C/Ø (p63FLOX, right panels) embryos at rostral (C), medial (D), and caudal (E) levels. Sections
were stained with Hoechst 33258 to visualize cell nuclei. The cortex (Ctx), ganglionic eminences (GE)
and lateral ventricles (LV) are all denoted. White lines illustrate where cortices were analyzed at dorsal
(D), lateral (L) and ventral (V) levels. Scale bar D 200 mm.
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later, on E15 (Fig. 1A). Immunostaining for YFP showed that
Cre-mediated recombination was extensive; most cells in the ven-
tricular and subventricular precursor zones (VZ/SVZ) were

positive for YFP, as were many of the newborn neurons in the
intermediate zone (IZ) and cortical plate (CP) (Fig. 1B). To ask
about morphological alterations that occurred following recom-
bination, we counterstained these sections with Hoechst 33258
to highlight nuclei. This analysis showed that the forebrain of
p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø embryos was perturbed
relative to control p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/Ø

embryos, with enlarged lateral ventricles, reduced cortical thick-
ness and decreased ganglionic eminence size (Fig. 1C–E).

To quantify these perturbations, we focused on the cortex.
Initially, we measured cortical thickness at 3 different rostral to
caudal levels, making dorsal, lateral and ventral measurements at
each level (Fig. 1C–E). This analysis showed that when p63 was
acutely ablated, cortical thickness was significantly reduced
throughout the rostrocaudal extent of the cortex (Fig. 2A–C),
with the largest decreases at the rostral level. We also measured
the size of the lateral ventricles by determining total relative area
at the same 3 rostrocaudal levels used for the cortical thickness
measurements. This analysis showed that the lateral ventricles
were enlarged throughout the rostrocaudal extent of the forebrain
in p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø embryos compared
with control p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/Ø embryos
(Fig. 2D). Thus, acute ablation of p63 in embryonic neural pre-
cursors and their progeny from E12 to E15 was sufficient to cause
cortical tissue loss and ventricular enlargement.

Acute conditional deletion of p63 induces widespread
apoptosis in the embryonic forebrain

One explanation for these morphological phenotypes is that
p63 is essential for the survival of embryonic neural precursors
and their neuronal progeny as we have shown for adult neural
precursor cells.31,36 To address this possibility, we assessed cell
death. Initially, we isolated cortices of E15 p63fl/fl;R26YFPfl/fl;
nestin-CreERT2C/Ø and p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/

Ø embryos that were exposed to tamoxifen at E12, and performed
qRT-PCR for p63 mRNA to confirm recombination. We also
analyzed PUMA mRNA as an indicator of enhanced p53-depen-
dent apoptotic signaling. This analysis showed that p63 mRNA
levels were significantly decreased, as predicted, and that PUMA
mRNA levels were coincidently increased almost 2-fold
(Fig. 3A). We therefore immunostained E15 cortical sections
from these embryos for cleaved caspase 3 (CC3), a marker for

Figure 2. Conditional ablation of p63 in cortical precursors during the
neurogenic period causes reduced cortical thickness and enlarged lateral
ventricles. p63wt/wt; R26YFPfl/fl;nestin-CreERT2C/Ø (p63WT) or p63fl/fl;
R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX) embryos were exposed to
tamoxifen (injected into their mothers) at E12, and then their brains
were analyzed 3 d later at E15. (A-C) Quantification of coronal forebrain
sections as shown in Fig. 1 at rostral (A), medial (B), and caudal (C) lev-
els, showing the thickness of the cortex from meninges to ventricle, as
measured dorsally, laterally and ventrally. *p< 0.05; **p< 0.01;
***p< 0.001; n D 3 animals per group. (D) Quantification of the relative
area of the lateral ventricles in coronal forebrain sections as shown in
Fig. 1 at rostral, medial and caudal levels. AU, arbitrary units; **p< 0.01;
***p< 0.001; n D 3 animals per group. In all panels, error bars denote
SEM.
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Figure 3. Conditional ablation of p63 in cortical precursors during the neurogenic period induces apoptosis throughout the embryonic cortex. p63wt/wt;
R26YFPfl/fl;nestin-CreERT2C/Ø (p63WT) or p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX) embryos were exposed to tamoxifen (injected into their moth-
ers) at E12, and their cortices were analyzed 3 d later at E15. (A) Quantitative RT-PCR for p63 mRNA (left panel) and PUMAmRNA (right panel) comparing
the relative levels of expression in p63WT and p63FLOX cortices at E15. Values are expressed as fold difference relative to the control group (p63WT).
*p < 0.05; **p < 0.01; n D 4 and 5 embryos each for p63 and PUMA mRNAs respectively. (B) Representative images of coronal cortical sections from
p63WT and p63FLOX embryos, immunostained for cleaved caspase-3 (CC3, red) and counterstained with Hoechst 33258 (blue). The boxed areas are
shown at higher magnification to the right, and arrows denote CC3-positive cells. The cortex (Ctx), ganglionic eminences (GE), and lateral ventricles (LV)
are all denoted. Scale bar D 200 mm. (C) Quantification of sections as shown in (B) for the total number of CC3-positive cells in the cortex per section,
determined by counting 3 similar sections per embryo at rostral, medial and caudal cortical levels. ***p < 0.001; n D 3 animals each. (D) Representative
images of coronal cortical sections from p63WT and p63FLOX embryos, analyzed by TUNEL (red) and counterstained with Hoechst 33258 (blue). The
boxed areas are shown at higher magnification to the right, and arrows denote TUNEL-positive cells. The cortex (Ctx), ganglionic eminences (GE), and lat-
eral ventricles (LV) are all denoted. Scale bar D 200 mm. (E) Quantification of sections as shown in (D) for the total number of TUNEL-positive cells in the
cortex per section, determined by counting 3 similar sections per embryo at rostral, medial and caudal cortical levels. ***p < 0.001; n D 3 animals each.
In all panels, error bars denote SEM.
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apoptotic cell death. In control p63wt/wt;R26YFPfl/fl;nestin-
CreERT2C/Ø embryos, very few cortical cells were positive for
CC3, as we have previously shown for wildtype cortices.37,40 In
contrast, large numbers of cells were CC3-positive in cortices of
p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø embryos treated with
tamoxifen (Fig. 3B). These CC3-positive cells were scattered
throughout the cortical layers, with many positive cells in the pre-
cursor zones adjacent to the lateral ventricles, and many in the
upper layers of the cortex, which contain newborn neurons.
There were also many CC3-positive
cells in the ganglionic eminence (GE)
(Fig. 3B), consistent with the decreased
size of this structure (Fig. 1C–E).
Quantification of cortices at rostral,
medial and caudal levels showed a
robust increase in CC3-positive cells,
with as many as 200 cortical CC3-posi-
tive cells per section following p63
ablation (Fig. 3C).

To confirm that this large increase in
CC3-positive cells following acute p63
ablation was due to enhanced apoptosis,
we performed TUNEL assays for DNA
fragmentation. As seen with CC3, very
few TUNEL-positive cells were
observed in control p63wt/wt;R26YFPfl/
fl;nestin-CreERT2C/Ø cortices following
tamoxifen treatment, consistent with
the low level of apoptosis in the wild-
type embryonic cortex.37,40 In contrast,
we observed many TUNEL-positive
cells in cortices of p63fl/fl;R26YFPfl/fl;
nestin-CreERT2C/Ø embryos treated
with tamoxifen (Fig. 3D). As seen with
CC3, these positive cells were located
throughout the cortical layers, consistent
with apoptosis of both precursors and
newborn neurons. Quantification at ros-
tral, medial and caudal levels indicated a
highly significant increase in TUNEL-
positive cells, with the magnitude simi-
lar to that seen with CC3 immunostain-
ing (Fig. 3E). There were also many
TUNEL-positive cells in the GE follow-
ing p63 ablation (Fig. 3D), consistent
with the CC3 data. Thus, acute ablation
of p63 in neural precursors and their
newborn progeny causes death of many
developing forebrain cells.

Acute conditional deletion of p63
depletes embryonic cortical radial
precursors, intermediate progenitors,
and newborn neurons

To ask about the consequences of
this increased apoptosis for cortical

morphogenesis, we analyzed cell type-specific markers in cortical
sections from E15 p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø and
p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/Ø embryos that were
treated with tamoxifen at E12. To analyze cortical precursors, we
immunostained sections for Pax6, a marker for radial precursors
of the VZ/SVZ, and for Tbr2, a marker for intermediate progen-
itors that are found in the SVZ. This analysis (Fig. 4A) showed
that both precursor populations were present and appropriately
localized in the p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø cortices,

Figure 4. Conditional ablation of p63 in cortical precursors during the neurogenic period causes corti-
cal thinning but not cortical disorganization. p63wt/wt; R26YFPfl/fl;nestin-CreERT2C/Ø (p63WT) or p63fl/fl;
R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX) embryos were exposed to tamoxifen (injected into their moth-
ers) at E12, and their cortices were analyzed 3 d later at E15. (A) Representative images of coronal corti-
cal sections from p63WT and p63FLOX embryos, immunostained for the radial precursor marker Pax6
(green) and the intermediate progenitor marker Tbr2 (red). The cortical plate (CP), ventricular/subven-
tricular zones (VZ/SVZ), ganglionic eminences (GE) and lateral ventricles (LV) are all denoted. The dot-
ted line in the right panel denotes the surface of the cortex. The boundaries of the VZ/SVZ are
indicated by dotted white lines. (B) Representative images of coronal cortical sections from p63WT and
p63FLOX embryos, immunostained for the neuronal marker bIII-tubulin (green) and the pan-precursor
marker Sox2 (red). The cortical plate (CP), ventricular/subventricular zones (VZ/SVZ), ganglionic eminen-
ces (GE) and lateral ventricles (LV) are all denoted. The boundaries of the VZ/SVZ are indicated by
dotted white lines. In all micrographs, scale bars D 200 mm.
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but that the VZ/SVZ itself was thinner following acute p63 abla-
tion. Similarly, immunostaining for the pan-precursor marker
Sox2, which delineates the VZ/SVZ and the neuronal marker

bIII-tubulin, which delineates the IZ and CP (Fig. 4B) con-
firmed that cortical layers were appropriately organized, but that
they were all relatively thinner following acute p63 ablation.

These data are consistent with the
idea that cortical morphogenesis is nor-
mal following acute p63 ablation, but
that the increased cell death results in
decreased numbers of precursors and
newborn neurons, leading to thinning of
all cortical layers. To ask if this was the
case, we quantified total neural precur-
sors following immunostaining of similar
sections for Sox2. To do this, we counted
total marker-positive cells in a 200 mm
wide strip of the medial-lateral cortex
extending from the meninges to the ven-
tricle. This analysis demonstrated that
there were less than half as many Sox2-
positive precursors in p63fl/fl;R26YFPfl/fl;
nestin-CreERT2C/Ø cortices relative to
controls (Fig. 5A and B). To ask whether
this was due to a reduction in radial pre-
cursors and/or intermediate progenitors,
we performed a similar analysis for Pax6
(Fig. 5C and D) and Tbr2 (Fig. 5E and
F). Both populations were significantly
decreased by acute p63 ablation, with a
larger decrease in Pax6-positive radial
precursors. We performed a similar anal-
ysis for cortical neurons, immunostaining
for Satb2, a marker for many of the corti-
cal neurons that are born over the time
period from E12 to E15.41 This analysis
demonstrated that tamoxifen treatment
caused a significant decrease in Satb2-
positive neurons in p63fl/fl;R26YFPfl/fl;
nestin-CreERT2C/Ø versus control
p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/Ø

cortices (Fig. 5G and H), confirming the
reduction in cortical neurons suggested
by the decrease in bIII-tubulin immu-
nostaining (Fig. 4B).

Embryonic cortical precursors
display a cell-autonomous deficit in cell
survival following acute p63 ablation

To further confirm that acute abla-
tion of p63 in neural precursors causes
enhanced cell death, we turned to cell
culture experiments. Initially, we treated
p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø

vs. control p63wt/wt;R26YFPfl/fl;nestin-
CreERT2C/Ø embryos with tamoxifen
at E12 and then isolated neurospheres
from the embryonic cortices. Quantifi-
cation of the number of primaryFigure 5. For figure legend, see page 3276.
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neurosphere-initiating cells, a surrogate measure of neural precur-
sor numbers, demonstrated that they were decreased more than
2-fold following acute p63 ablation in vivo (Fig. 6A). qRT-PCR
analysis of the RNA from these neurospheres confirmed that p63
mRNA was highly reduced, but that expression of the other fam-
ily members was unaltered (Fig. 6B).

To further establish a role for p63 in cortical precursor sur-
vival, we performed inducible ablation experiments in primary
adherent cultures of developing cortical radial precursors. Specifi-
cally, we cultured p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø versus
control p63wt/wt; R26YFPfl/fl;nestin-CreERT2C/Ø cortical pre-
cursors from E12.5 mice, and after 2 d added increasing concen-
trations of tamoxifen to induce ablation of p63 and expression of
YFP. We immunostained these cultures one day later for CC3
and YFP (Fig. 6C). Quantification demonstrated a robust
increase in apoptosis of YFP-positive precursors that was depen-
dent upon the dose of tamoxifen (Fig. 6D).

DNp73 mRNA is increased in cortical precursors when p63
is constitutively knocked-out

These data provide strong support for the idea that p63 is
required in a cell-autonomous fashion to support the survival of
cortical precursors and newborn neurons both in culture and in
vivo. However, a previous study examined the cortices of embry-
onic p63¡/¡ mice and concluded that p63 was not necessary for
the survival of either precursors or neurons.38 One explanation
for this discrepancy is that in the constitutive knockout situation,
other family members compensate for the loss of p63.42 To test
this idea, we cultured E15 cortical precursors from p63C/C vs.
p63¡/¡ mice as neurospheres. As previously reported,38 and in
contrast to the robust decrease in cortical neurosphere-initiating
cells in tamoxifen treated p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø

embryos (Fig. 6A), there was no difference in the number of neu-
rosphere-initiating cells cultured from p63¡/¡ versus p63C/C

cortices (Fig. 6E). However, while qRT-PCR analysis showed
that the levels of TAp73 and p53 mRNA were unaltered in

p63¡/¡ neurospheres, the levels of DNp73 mRNA, a pro-survival
member of the p53 family, were upregulated by 2-fold (Fig. 6F).

To ask if this compensatory increase in DNp73 mRNA also
occurred in vivo, we crossed p63C/- mice, and then analyzed cor-
tical precursors in their p63C/C vs. p63¡/¡ embryonic progeny.
To do so, we analyzed E15 coronal cortical sections by immunos-
taining for Sox2 to identify cortical precursor cells, combined
with in situ hybridization with a probe specific for DNp73
mRNA (Fig. 6G). Quantification of this data demonstrated that
while similar numbers of Sox2-positive cortical precursors
expressed DNp73 mRNA in p63¡/¡ versus p63C/C embryos,
approximately 64% and 59%, respectively, DNp73 mRNA levels
were increased in the p63¡/¡ cortical precursors, 3.7 vs. 2.0
DNp73 mRNA grains per Sox2-positive cell in p63¡/¡ versus
p63C/C cortices, respectively. Since DNp73 is a key prosurvival
protein in the embryonic cortex,19,23,37,43-45 then this compensa-
tory increase likely provides an explanation for the lack of an apo-
ptotic phenotype in the p63¡/¡ embryonic cortex as shown by
Holembowski et al.38

Discussion

The work presented here definitively establishes that p63 plays
an important prosurvival role in the embryonic central nervous
system (CNS). Inducible ablation of p63 in embryonic neural
precursors and their newborn neuronal progeny led to a robust
increase in apoptosis of forebrain precursors and neurons, and
perturbed cortical morphogenesis. The overall organization of
the cortical layers was unchanged, but there were many fewer
radial precursors, neurogenic intermediate progenitors and neu-
rons, decreases that caused thinning of the cortex and enlarge-
ment of the ventricles. This cell death phenotype was cell
autonomous, since inducible ablation of p63 in cultured precur-
sors also caused apoptosis. These findings are very similar to those
obtained using in utero electroporation to knockdown p63 in the
embryonic cortex,37 but are different from those obtained by

Figure 5 (See previous page). Cortical precursors and newborn neurons are reduced in number following conditional ablation of p63. p63wt/wt;
R26YFPfl/fl;nestin-CreERT2C/Ø (p63WT) or p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX) embryos were exposed to tamoxifen (injected into their moth-
ers) at E12, and their cortices were analyzed 3 d later at E15. (A) Representative images of the VZ/SVZ of coronal cortical sections from p63WT and
p63FLOX embryos, immunostained for Sox2 (green; the endogenous YFP is not seen under these excitation/emission conditions). Insets show higher
magnification images and the arrows denote Sox2-positive cells. The boundaries of the VZ/SVZ are indicated by dotted white lines. Scale bar D 100 mm.
(B) Quantification of the total number of Sox2-positive cells in a strip of the lateral-medial cortex extending from the meninges to the ventricle, deter-
mined from sections as in (A). *** p <0.001; n D 3 sections per embryo and 3 embryos per genotype (9 sections total). (C) Representative images of the
VZ/SVZ of coronal cortical sections from p63WT and p63FLOX embryos, immunostained for Pax6 (green; the endogenous YFP is not seen under these
excitation/emission conditions). Insets show higher magnification images and the arrows denote Pax6-positive cells. The boundaries of the VZ/SVZ are
indicated by dotted white lines. Scale bar D 100 mm. (D) Quantification of the total number of Pax6-positive cells in a strip of the medial-lateral cortex
extending from the meninges to the ventricle, determined from sections as in (C). ***p < 0.001; n D 3 sections per embryo and 3 embryos per genotype
(9 sections total). (E) Representative images of the VZ/SVZ of coronal cortical sections from p63WT and p63FLOX embryos, immunostained for Tbr2 (red).
Insets show higher magnification images and the arrows denote Tbr2-positive cells. The boundaries of the VZ/SVZ are indicated by dotted white lines.
Scale bar D 100 mm. (F) Quantification of the total number of Tbr2-positive cells in a strip of the medial-lateral cortex extending from the meninges to
the ventricle, determined from sections as in (E). ***p< 0.001; n D 3 sections per embryo and 3 embryos per genotype (9 sections total). (G) Representa-
tive images of the cortical plate of coronal cortical sections from p63WT and p63FLOX embryos, immunostained for Satb2 (red). Insets show higher mag-
nification images and the arrows denote Satb2-positive cells. Scale bar D 100 mm. (H) Quantification of the total number of Satb2-positive cells in a strip
of the medial-lateral cortex extending from the meninges to the ventricle, determined from sections as in (G). ***p < 0.001; n D 3 sections per embryo
and 3 embryos per genotype (9 sections total). The cortical plate (CP), ventricular/subventricular zones (VZ/SVZ), intermediate zone (IZ) and lateral ven-
tricles (LV) are all denoted. In all panels, error bars denote SEM.
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studying p63¡/¡ embryos, where no
CNS phenotype was observed.36 We
show here that the lack of a phenotype
when p63 is constitutively ablated is
likely due to upregulation of the related
prosurvival protein, DNp73, in neural
precursors.

We previously showed that when p63
was haploinsufficient or was inducibly
ablated in adult neural precursor cells
(NPCs), there was apoptosis of forebrain
and hippocampal NPCs, reduced adult
neurogenesis, and deficits in hippocam-
pus-dependent memory formation.36

These findings, together with the current
work, indicate that p63 promotes NPC
survival throughout murine life. We
propose that it is the DNp63 isoform
that promotes NPC survival, since the
death of embryonic cortical precursors
caused by p63 knockdown was rescued
by ectopic expression of DNp63 but not
TAp63,37 and since inducible knockout
of DNp63 but not of TAp63 caused
death of adult forebrain NPCs cultured
as neurospheres.36 How then does
DNp63 promote survival of cortical pre-
cursor cells during embryogenesis? Our
previous work indicates that it does so
by antagonizing the pro-apoptotic
actions of p53. In particular, when p63
was acutely knocked-down in cortical
precursors, this caused increased apopto-
sis (as seen here with acute genetic abla-
tion), and this cell death was rescued
both in culture and in vivo by coinci-
dently knocking down p53.37 This pro-
survival mechanism appears to persist
throughout life in neural precursors,
since coincident p53 knockout
completely rescued the deficits in adult
NPCs and adult neurogenesis that occur
in p63C/- mice.36 Thus, the DNp63 iso-
form acts to promote NPC survival by
antagonizing p53 and potentially other
full-length family members. In this
regard, ectopic expression of TAp63
induces the death of both NPCs and
neurons,35,37 indicating that in the ner-
vous system, TAp63 promotes and
DNp63 inhibits cell death.

These findings demonstrate that
DNp63 and DNp73 are both key pro-
survival proteins in the mammalian
CNS, with DNp73 important for neuro-
nal survival,19,23,37,43-45 and DNp63

Figure 6. For figure legend, see page 3278.
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important for both NPC and newborn neuron survival.31,36,37

This difference is exemplified by the finding that knockdown of
DNp73 in the embryonic cortex caused the death of newborn
neurons but not precursors,37 while a similar knockdown of p63
caused the death of cortical precursors.37 Thus, under normal cir-
cumstances, DNp63 is the most important family member with
regard to NPC survival. However, our data showing upregulation
of DNp73 expression in cortical NPCs of p63¡/¡ mice argue that
when p63 is constitutively ablated, DNp73 can replace the pro-
survival function of DNp63, thereby explaining the lack of an
apparent embryonic NPC phenotype in the p63¡/¡ mice. In
normal circumstances, p73 promotes 2 other important roles in
NPCs. Firstly, TAp73 enhances NPC self-renewal,26,27 at least
in part by suppressing neurogenic transcription by upregulating
the inhibitory bHLH Hey2.26 Secondly, p73 regulates the bal-
ance of p53-mediated senescence vs. apoptosis of NPCs. In par-
ticular, coincident haploinsufficiency for p73 inhibited the
enhanced apoptosis of p63C/- adult NPCs, causing them instead
to senesce.31 Thus, it is the interplay between p63, p73 and p53
that ultimately determines NPC numbers by regulating their sur-
vival, self-renewal, and senescence.

Materials and Methods

Animals and tamoxifen treatment
This study was approved by the Hospital for Sick Children

Animal Care Committee, in accordance with Canadian Council
on Animal Care guidelines. p63C/- mice4 were maintained on a
C57BL/6 background as described.36 p63fl/fl mice 46 were crossed
with R26YFPfl/fl reporter mice47 and nestin-CreERT2C/Ø mice39

and then maintained through homozygous breeding pairs on a
C57BL/6 background, as we have previously described.36 For
neuroanatomical analyses, adult pregnant female p63fl/fl;
R26YFPfl/fl;nestin-CreERT2C/Ø and p63wt/wt;R26YFPfl/fl;nestin-
CreERT2C/Ø mice were injected intraperitoneally once with

tamoxifen (180 mg/kg in sunflower seed oil) at gestational day
12. Mice had free access to rodent chow and water in a 12 hour
dark-light cycle room.

Immunocytochemistry and histological analysis
For morphometric analysis, immunostaining of tissue sections

was performed as described.36,48 Briefly, brain sections were
washed with TBS buffer, permeabilized with TBS, 0.3% Triton
X-100 solution, and then incubated in TBS, 5% BSA, 0.3% Tri-
ton X-100 for 1 hour as a blocking solution. Brain slices were
incubated with primary antibodies in blocking solution at 4�C
overnight. After TBS washes, the sections were incubated with
secondary antibodies in blocking solution for 1 hour at room
temperature. Finally, after TBS washes, sections were mounted
in Permount solution (Thermo). In most cases, sections were
counterstained with Hoechst 33258 (Sigma). TUNEL staining
(Millipore) was performed according to manufacturer’s instruc-
tions. Digital image acquisition was performed with Zen software
(Carl Zeiss) on a Zeiss Axio Imager M2 microscope with a
Hamamatsu Orca-Flash 4.0 CCD video camera. For quantifica-
tion of embryonic cortical thickness, rostral, medial and caudal
cortical sections were measured at 3 different points (dorsal, lat-
eral and ventral), analyzing at least 3 similar sections/embryo
from 3 different animals per genotype (for a total of at least 9 sec-
tions per genotype) using ImageJ software (NIH). For quantifica-
tion of the embryonic ventricle area, a line was drawn around the
perimeter of the ventricle at rostral, medial and caudal levels
from at least 3 similar sections/embryo from 3 different animals
per genotype. The area was calculated and values express as arbi-
trary units (AU) using ImageJ software. For quantification of the
number of apoptotic cells, or of precursor cells and neurons,
serial coronal 18 mm sections were collected spanning the rostro-
caudal extent of the E15 embryonic cortex and these were sam-
pled and immunostained or TUNEL-stained (as relevant). For
quantification of precursor and neuron numbers, we analyzed
sections at the medial-lateral level, counting all marker-positive

Figure 6 (See previous page). (A, B) Acute ablation of p63 depletes cortical precursors but does not deregulate expression of other p53 family mem-
bers. (A) p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/Ø (p63WT) or p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX) embryos were exposed to tamoxifen at E12, at
E15 cortical cells were cultured under clonal neurosphere conditions, and the number of neurosphere-initiating cells was quantified. **p < 0.01; n D 4
animals per genotype. (B) Quantitative RT-PCR for TAp73 mRNA, DNp73 mRNA, p53 mRNA and p63 mRNA in cortical neurospheres isolated from p63WT
and p63FLOX as in (A). The data are expressed as fold difference relative to their corresponding control group (p63WT). ***p < 0.001; n D 4 animals per
genotype. (C, D) Acute ablation of p63 induces cell death in cultured cortical precursors. (C) Representative images of primary adherent E12.5 cortical
precursors cultured from p63wt/wt;R26YFPfl/fl;nestin-CreERT2C/Ø (p63WT, top panels) or p63fl/fl;R26YFPfl/fl;nestin-CreERT2C/Ø (p63FLOX, bottom panels)
embryos, treated with 1 mM tamoxifen at 2 days, and then immunostained 24 hours later for YFP (green) and cleaved caspase-3 (CC3, red). Left panel
shows the merge and arrows denote cells positive for both YFP and CC3. Scale bar D 50 mm. (D) Quantification of the proportion of YFP-positive cells
that expressed CC3 in experiments as in (C), following exposure to 1 nM, 50 nM, or 1 mM tamoxifen. The control, 0 tamoxifen cultures were treated with
vehicle alone and since none of these cells expressed YFP, the proportion of total CC3-positive cells was determined. **p < 0.01; ***p < 0.001; n D 3 ani-
mals per genotype. (E, F) Constitutive loss of p63 causes compensatory upregulation of DNp73 expression in embryonic cortical precursors. (E) E15 corti-
cal cells were isolated from p63¡/¡ or p63C/C embryos, were cultured under clonal neurosphere conditions, and the number of neurosphere-initiating
cells was quantified. The data are expressed as fold difference relative to their corresponding control group (p63C/C). n D 6 and 5 animals for p63C/C

and p63¡/¡, respectively. (F) Quantitative RT-PCR for TAp73mRNA, DNp73mRNA, and p53mRNA in neurospheres isolated from p63¡/¡ and p63C/C corti-
cal neurospheres prepared as in (E). The data are expressed as fold difference relative to their corresponding control group (p63C/C). **p < 0.01; n D 4
and 5 p63¡/¡ and p63C/C animals, respectively. In all panels, error bars denote SEM. (G) Representative images of coronal cortical sections from E15
p63C/C and p63¡/¡ embryos, immunostained for the pan-precursor marker Sox2 (green, left panels) and hybridized for DNp73 mRNA (red, right panels,
same fields of view). The white lines and arrows delineate Sox2-positive precursors that contain DNp73 mRNA-positive foci. The ventricular/subventricu-
lar zones (VZ/SVZ) are indicated. IHCD immunohistochemistry. FISHD fluorescent in situ hybridization. Scale barD 50 mm. See text for the quantification
of the data of Fig. 6G.
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cells in a 200 mm wide strip of the cortex extending from the
meninges to the ventricle. For cell death analysis, every TUNEL
or cleaved caspase-3 positive cell was counted on sections at ros-
tral, medial and caudal levels. In all cases, we analyzed at least 3
similar cortical sections/embryo from 3 different embryos per
genotype (for a total of at least 9 sections per genotype).

In situ hybridization
Fluorescent in situ hybridization (FISH) was performed with

probes targeting DNp73 (National Center for Biotechnology
Information [NCBI] Nucleotide Reference Sequence [RefSeq]
database accession number NM_001126330.1) using the RNA-
scope kit (Advanced Cell Diagnostics), according to the man-
ufacturer’s instructions. Briefly,49 freshly dissected brains of E15
embryos in OCT were snap-frozen in liquid nitrogen and cryo-
sectioned coronally at 18 mm. Sections were 4% post-fixed with
paraformaldehyde and washed with ethanol, followed by tissue
pretreatment, probe hybridization and signal amplification. Posi-
tive hybridization was identified as punctate dots. After FISH,
immunostaining was performed for Sox2. Z-stack images were
taken with an optical slice thickness of 0.1 mm, with a 40X
objective on a Zeiss Axio Imager M2 microscope with an Apo-
Tome device and with a Hamamatsu Orca-Flash 4.0 CCD video
camera. The proportion of DNp73 mRNA-Sox2-double positive
cells was quantified from z-stacked images from random regions
of the VZ/SVZ. The number of DNp73 mRNA foci per Sox2-
positive cell was quantified from 200–300 z-stacked images from
random regions of the VZ/SVZ.

Cortical precursor cell cultures and quantification
E12.5 cortical precursors were cultured from p63wt/wt;

R26YFPfl/fl;nestin-CreERT2C/Ø or p63fl/fl;R26YFPfl/fl;nestin-
CreERT2C/Ø E12.5 cortices as described previously.40,48 Plating
density was 125,000–150,000 cells/ml. For tamoxifen treatment
in vitro, tamoxifen was dissolved in DMSO so that the final vol-
ume of DMSO was approximately 0.1% of the total volume of
medium. In all experiments, DMSO alone was used as a vehicle
control. Cells were treated with tamoxifen at day 2 in culture,
and analyzed one day later. For quantification, immunostaining
and image acquisition were performed as described above, and >

100 cells per condition per experiment were counted and ana-
lyzed, and experiments were performed with 3 embryos per geno-
type, analyzed individually.

Antibodies
The primary antibodies used for immunostaining were

chicken anti-GFP (1:1000; Abcam), rabbit anti-Pax6 (1:1000;
Covance), rabbit anti-Tbr2 (1:250; Abcam), chicken anti-Tbr2
(1:400; Abcam), mouse anti-Satb2 (1:400; Abcam), mouse anti-
bIII-tubulin (1:1000; Covance), rabbit anti-bIII-tubulin
(1:1000; Covance), rabbit anti-cleaved caspase 3 (1:200; Milli-
pore), rabbit anti-Sox2 (1:200; Cell Signaling Technology), and
goat anti-Sox2 (1:500; Santa Cruz). The secondary antibodies
used for immunostaining were Alexa Fluor 555-conjugated don-
key anti-mouse and anti-rabbit IgG (1:1000; Molecular Probes),
Alexa Fluor 488-conjugated donkey anti-mouse, and anti-rabbit

IgG (1:1000; Molecular Probes), Alexa Fluor 488-conjugated
chicken anti-rat IgG (1:1000; Molecular Probes), and Cy3-con-
jugated donkey anti-goat antibody (1:1000; Jackson
ImmunoResearch).

Neurosphere cultures
To make embryonic cortical neurospheres, cortices from E15

p63wt/wt; R26YFPfl/fl;nestin-CreERT2C/Ø or p63fl/fl;R26YFPfl/fl;
nestin-CreERT2C/Ø embryos, previously injected with tamoxifen
on E12, were mechanically triturated in serum-free medium con-
taining 20 ng/mL EGF (Sigma), 10 ng/mL FGF2 (Sigma), and
2 mg/mL heparin (Sigma). For quantification, cells were plated
at clonal density50 in 6-well dishes (2 ml/well). After 6 d in cul-
ture, primary neurospheres containing at least 50 cells were
counted, and were then collected for mRNA expression analysis.
A similar procedure was used to make embryonic cortical neuro-
spheres from E15 p63C/C or p63¡/¡ embryos.

Quantitative RT-PCR
RNA was isolated from primary neurospheres or dissected E15

cortices using the E.Z.N.A. Total RNA Kit I (Omega Bio-tek), and
was treated with DNase I using the E.Z.N.A RNase-Free DNase I
Set (Omega Bio-tek). cDNA was synthesized from 1mg of total
RNA using RevertAid H Minus M-MulV Reverse Transcriptase
(Fermentas), and quantitative PCR was performed using Lightcy-
cler 480 SYBR Green I Master mix (Roche), following the man-
ufacturer’s instructions. The following primers were used for
quantitative PCR: TAp73F – GCACCTACTTTGACCTCCCC,
TAp73R–GCACTGCTGAGCAAATTGAAC, DNp73F – CTA
CCCCTACCCCACCTAG, DNp73R – CTGAGCAAATTGA
ACTGGGC, pan-p63F – CGGAAGGCAGATGAAGACAG,
pan-p63R – GGGATCTCCGTTTCTTGATGG, p53F – CTCT
CCCCCGCAAAAGAAAAA, p53R – CGGAACATCTCGA
AGCGTTTA, PUMAF – GTGACCACTGGCATTCATTTG,
PUMAR –CTCCTCCCTCTTCTGAGACTT,GAPDHF –GG
GTGTGAACCACGAGAAATA,GAPDHR –CTGTGGTCAT-
GAGCCCTTC. GAPDHmRNAwas used as an endogenous con-
trol for all reactions, and all reactions were performed in triplicate.
Quantitative PCRs were run on a C1000 Touch Thermal Cycler
(Bio-Rad), and analyzed using Bio-Rad CFX Manager Software
(Bio-Rad).

Statistical analysis
Statistics were performed using 2-tailed Student’s t-test unless

otherwise indicated in the text. To analyze the multi-group neu-
roanatomical studies, we used one-way ANOVA unless otherwise
indicated in the text. Significant interactions or main effects were
further analyzed using Newman-Keuls post-hoc tests. All tests
were performed using Prism 5 (GraphPad). In all cases, error
bars indicate standard error of the mean.
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