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Coffin–Lowry Syndrome (CLS) is an X-linked genetic disorder associated with cognitive and behavioural
impairments. CLS patients present with loss-of-function mutations in the RPS6KA3 gene encoding the
mitogen-activated protein kinase (MAPK)–activated kinase p90 ribosomal S6 kinase 2 (Rsk2). Although Rsk2
is expressed in the embryonic brain, its function remains largely uncharacterized. To this end, we isolated
murine cortical precursors at embryonic day 12 (E12), a timepoint when neuronal differentiation is initiated,
and knocked-down Rsk2 expression levels using shRNA. We performed similar experiments in vivo using
in utero electroporations to express shRNA against Rsk2. Rsk2 knockdown resulted in a significant decrease in
neurogenesis and an increase in the proportion of proliferating Pax6-positive radial precursor cells, indicating
that Rsk2 is essential for cortical radial precursors to differentiate into neurons. In contrast, reducing Rsk2
levels in vitro or in vivo had no effect on the generation of astrocytes. Thus, Rsk2 loss-of-function, as seen in
CLS, perturbs the differentiation of neural precursors into neurons, and maintains them instead as
proliferating radial precursor cells, a defect that may underlie the cognitive dysfunction seen in CLS.
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Introduction

During mammalian development, the cerebral cortex arises from
proliferating neural precursors that will sequentially generate neurons,
astrocytes, and oligodendrocytes. In rodents, cortical neurogenesis
occurs fromE12 to E17, afterwhich gliogenesis commences. The precise
timing and extent of the genesis of these different cell types from
cortical neural precursors are regulated by external cues such as growth
factors, but the intracellularmechanisms thatmediate these signals, and
the ways that they impinge upon intrinsic cellular programs are just
now being elucidated (reviewed in Miller and Gauthier (2007)). In this
regard, we and others have previously shown that signalling proteins of
the MAP kinase pathway such as H-Ras, MEK and Erk all play essential
roles in embryonic cortical neural precursors (Ménard et al., 2002;
Paquin et al., 2005; Liu et al., 2006; Gauthier et al., 2007; Samuels et al.,
2008; Paquin et al., 2009). Despite these studies, however, the signals
that are downstream of the MEK–Erk pathway that regulate cortical
differentiation are incompletely understood.
Coffin–Lowry syndrome (CLS, OMIM 303600; Coffin et al., 1966;
Lowry et al., 1971) is an X-linked genetic disorder caused by
heterogeneous loss-of-function mutations in the RPS6KA3 gene that
encodes the protein Rsk2. Over 75 different mutations spanning the 22
exonsof this genehavebeen identified,most of themcausingpremature
termination of protein translation resulting in a truncated, inactive
protein (Zeniou et al., 2004; Falco et al., 2005). Patients diagnosed with
CLS generally display thinning of the corpus callosum, asymmetry of
lateral ventricles, and smaller brain volumes (Wang et al., 2006; Kesler
et al., 2007). Males affected with CLS display cognitive deficits ranging
from moderate to severe mental retardation whereas affected females
display defects ranging from low-normal abilities to moderate mental
dysfunction.

Rsk2, the protein that ismutated in CLS, is phosphorylated by the Erks
and functions downstream of the Ras–MEK–Erk signalling pathway
(Anjum and Blenis, 2008). Intriguingly, many CLS patients display a
prominent forehead, broad and soft hands with stubby and tapering
fingers, cardiovasculardefects, and cognitivedysfunction (Reynolds et al.,
1986; Hanauer and Young, 2002; Tartaglia and Gelb, 2005; Bentires-Alj
et al., 2006; Zampino et al., 2007), characteristics that are also seen in
patientswith neuro-cranio-facial-cutaneous (NCFC) syndromes, a family
of disorders caused by mutation of proteins in the MAP kinase pathway
(reviewed in Aoki et al. (2008)). In this regard, two of the proteins that
are mutated in NCFC syndromes, the protein tyrosine phosphatase SHP2
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(Noonan syndrome) and H-Ras (Costello syndrome), are essential for
cortical precursor development (Aoki et al., 2005; Gauthier et al., 2007).
Moreover,NCFCmutations in theseproteins cause aberrantneurogenesis
and gliogenesis in the developing mouse cortex (Gauthier et al., 2007;
Paquin et al., 2009). These studies therefore support the idea that one
way human mutations in the MAP kinase pathway cause cognitive
dysfunction is by perturbing neural precursor development.

To test the idea that Rsk2 is also required for neural precursor
development, we have examined a potential role for this protein in the
embryonic mouse cortex. Here, we provide evidence that Rsk2 is
essential for normal development of cortical precursors, and that
genetic knockdown of Rsk2 decreases the differentiation of cortical
radial precursors into neurons but not astrocytes. These findings
strengthen the idea that the MAP kinase pathway provides one way
that growth factors enhance neurogenesis, and suggest that the
cognitive dysfunction observed in CLS is at least in part the consequence
of perturbed neural precursor differentiation during development.
Materials and methods

Animals

CD1micewere from Charles River Laboratories (Montreal, QC). This
study was approved by The Hospital for Sick Children's Animal Care
Committee, and use was in accordance with CCAC guidelines.
Culture of cortical precursor cells

Cortical precursor cells were cultured as previously described
(Barnabé-Heider and Miller, 2003; Paquin et al., 2005; Gauthier et al.,
2007; Paquin et al., 2009; Dugani et al., 2009). Briefly, cortices were
dissected from embryonic days 12 (E12) to E13 CD1 mouse embryos
in ice-cold HBSS (Invitrogen, Gaithersburg, MD) and transferred to
Neurobasal medium (Invitrogen) containing 500 μml glutamine
(Cambrex Biosciences, Hopkinton, MA), 2% B27 supplement (Invitro-
gen), and 1% penicillin–streptomycin (Invitrogen). The medium was
supplemented with 40 ng/ml FGF2 (Promega, Madison, WI). The
tissue was mechanically triturated with a plastic pipette into single
cells and cells were plated on four-well chamber slides (Nunc,
Naperville, IL). Chamber slides were previously coated with 2%
laminin and 1% poly-D-lysine (BD Biosciences, Bedford, MA) and cell
density was 150,000 cells/well.
Transfection of cortical precursor cells

For transfections, 1 to 2 h after plating, 1 μg of DNA and 1.5 μl of
Fugene 6 (Roche,Welwyn Garden City, UK) weremixedwith 100 μl of
Opti-MEM (Invitrogen) and were incubated at room temperature for
45 min and then added to each well. The three Rsk2 shRNA constructs
targeted three different regions on the Rsk2 mouse mRNA sequence
(EZ Biolabs) and their sequences are: shRNA-1, 5′-CAGAAGAGATT-
GAAATTCT-3′; shRNA-2, 5′-GAGGAAGATGTCAAATTCT-3′; shRNA-3,
5′-GAAGGTCACATCAAGTTAA-3′. A scrambled shRNA construct (5′-
TTCTCCGAACGTGTCACGGT-3′) was used as a control, and a previously-
described plasmid encoding EGFP under the CMV-promoter (pEGFP)
was used as a marker for cotransfected cells (Paquin et al., 2005;
Gauthier et al., 2007; Paquin et al., 2009; Dugani et al., 2009). For the
rescue experiments, we used 2.33 μl of Fugene 6 and 1.55 μg of DNA in
these proportions: 0.75 μg of HA-Rsk2 (kind gift from Dr. Deborah
Lannigan, University of Virginia, Charlottesville, VA) or empty vector;
0.4 μg shRNA; and 0.4 μg EGFP. In some experiments, as specified, the
day following plating, 50 ng/ml ciliary neurotrophic factor (CNTF;
Peprotech, Rocky Hill, NJ) was added by changing one half of the
medium.
In utero electroporation

In utero electroporation was performed as previously described
(Paquin et al., 2005; Bartkowska et al., 2007; Gauthier et al., 2007;
Paquin et al., 2009; Dugani et al., 2009). Briefly, E13/E14 CD1 pregnant
mice were anaesthesized with isoflurane, and a midline incision was
performed to access the embryos. A total of 4 μg of DNAwas injected in
the lateral ventricle of each embryo with 0.05% trypan blue as a tracer.
We used a previously-described nuclear EGFP expression plasmid
driven from the EF1-promoter (pEF-GFP). The embryos were injected
with nuclear EGFP expression plasmid driven from the EF1α-promoter
at a 1:3 ratiowith scrambled shRNA, Rsk2 shRNA, or HA-Rsk2, for a total
of 4 μgDNAper embryo and0.05% trypanblue asa tracer. After injection,
electroporation was performed using a square electroporator CUY21
EDIT (TR Tech, Japan), delivering five 50 ms pulses of 40 V with 950 ms
intervals per embryo. Embryos were then put back in utero and left to
develop for 3–8 days. For BrdU, pregnantmice were injected with BrdU
(Sigma) dissolved in PBS at a dose of 50 mg/kg bodyweight 3 days post-
electroporation and sacrificed 24 h later, as previously described
(Gauthier-Fisher et al., 2009). For analysis, brains were fixed in 4%
paraformaldehyde (PFA) (ElectronMicroscopy Sciences, Hatfield, PA) at
4 °C overnight, cryoprotected in 30% sucrose at 4 °C overnight, and
embedded in OCT compound (Sakura Finetek, Torrance, CA). The brains
were kept at−80 °C until cryosectioned (16 μm) and immunostained.

Immunocytochemistry

Immunocytochemistry of cultured cells and tissue sections was
performed as described (Paquin et al., 2005; Paquin et al., 2009;
Bartkowska et al., 2007;Gauthier et al., 2007; Paquin et al., 2009;Dugani
et al., 2009). For immunocytochemistry of cultured cells, cells were
washed with HEPES-buffered saline (HBS) and fixed with 4% PFA for
15 min, permeabilized with 0.2% NP-40 (USB Corporation, Cleveland,
OH) in HBS, and blocked with buffer containing 6% normal goat serum
(NGS) (Jackson ImmunoResearch, West Grove, PA) and 0.5% bovine
serum albumin (BSA) (Jackson ImmunoResearch) for 1–2 h at room
temperature. Cells were then incubated with primary antibodies in HBS
containing 3% NGS and 0.25% BSA at 4 °C overnight. After washingwith
HBS, cells were incubated with secondary antibodies prepared in HBS
containing 3% NGS and 0.25% BSA at room temperature for 1 h. Samples
were then washed with HBS, counterstained with Hoechst 33258
(1:1000; Sigma, St-Louis, MO) for 2 min, and mounted with GelTol
(Fisher Scientific, Houston, TX). For immunocytochemistry of tissue
sections, sections were dried at 37 °C for 15 min, washed in phosphate
buffer solution (PBS) (Hyclone, Logan, UT), and postfixed with 4% PFA
for 10–15 min. Theywere thenblocked andpermeabilizedwith10%BSA
and 0.3% Triton X-100 (EMD Chemicals Inc., Gibbstown, NJ) for 1 h. The
M.O.M. blocking kit (Vector Laboratories, Burlingame, CA) was then
used according to themanufacturer's protocol. Sections were incubated
with primary antibodies at 4 °C overnight, washed with PBS, and
incubatedwith secondary antibodies at room temperature for 1 h. They
were then counterstained with Hoechst 33258 for 2 min and mounted
with GelTol. For BrdU immunohistochemistry, sections were incubated
in 1 N HCL for 30 min at 55 °C before blocking in 10% horse serum and
0.3% Tx-100, based on our previous report (Gauthier-Fisher et al., 2009).
The primary antibodies used were mouse anti-GFP (1:1000; Invitro-
gen), rabbit anti-GFP (1:500; Chemicon, Temecula, CA), rabbit anti-Rsk2
(1:200; Santa Cruz), rabbit anti-phospho-Rsk (Ser227; 1:200; Santa
Cruz), rabbit anti-Erk (1:500; Santa Cruz) rabbit anti-phospho-Erk
(Thr202/Tyr204; 1:500, Cell Signaling Technology), mouse anti-nestin
(1:200, Chemicon), mouse anti-Ki67 (1:200; BD Biosciences), mouse
anti-βIII-tubulin (1:800; Covance, Princeton, NJ), rabbit anti-GFAP
(1:1000, Accurate Chemical & Scientific Corp., Westbury, NY), mouse
anti-A2B5 (1:400; Chemicon), rabbit anti-Pax6 (1:2000; Covance),
mouse anti-HuD (1:200; Invitrogen) and rat anti-BrdU (1:200; Accurate
Chemicals). The secondary antibodies used for immunocytochemistry
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Fig. 1. Rsk2 is present and active in precursor cells of the embryonic cortex. (A)Western
blot analysis for Rsk2 in HEK293 cells and cortices isolated at different developmental
stages. The blot was reprobed for Erk protein as a loading control. (B) Western blot
analysis for phospho-Rsk protein (pRsk) in cortices isolated at different developmental
stages. The blot was reprobed for total Erk. (C) Immunocytochemical analysis for Rsk2
(red) and the proliferation marker Ki67 (green) in coronal sections of E13.5 cortex. The
top panels show the entire width of the cortex from the ventricle (V) to the meninges
(M). The VZ/SVZ, which contains precursor cells, is denoted. The bottom panels show
the VZ/SVZ at higher magnification. In both cases, the right panels show the merged
image. Scale bars=50 μm (upper panels); 20 μm (bottom panels).
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were indocarbocyanine (Cy3)-conjugated goat anti-mouse and anti-
rabbit IgG (1:400; Jackson ImmunoResearch), FITC conjugated anti-
mouse and anti-rabbit IgG (1:200; Jackson ImmunoResearch), goat anti-
rat IgG AlexaFluor 555 (1:1000; AlexaFluor), dichlorotriazinyl amino
fluorescein-conjugated streptavidin (1:1000; Jackson ImmunoRe-
search), and (Cy3)-conjugated streptavidin (1: 1000; Jackson Immu-
noResearch). The specificity of the Rsk2 antibody for immunostaining
was confirmed using a blocking peptide supplied by the manufacturer
(Santa Cruz).

Microscopy and confocal analysis

For quantification of immunocytochemistry on cultured cells,
approximately 200–300 cells per condition per experiment were
counted and analyzed in at least 15 randomly selected fields spanning
the culturewell. Digital image acquisitionwasperformedwithNorthern
Eclipse software (Empix, Mississauga, Ontario, Canada) using a Sony
(Tokyo, Japan) XC-75CE CCD video camera. In all cases at least 3
independent experiments were performed and these data were pooled
unless otherwise indicated. For quantification of immunocytochemistry
on tissue sections, brains were chosen with a similar anatomical
distribution and level of EGFP expression. Images of the electroporated
dorsal telencephalon were taken and covered the ventricular zone,
subventricular zone, and cortical plate of each coronal section. A total of
four to five sections were analyzed per animal and 4–6 littermate pairs
were analyzed per condition. Images represented a mean of four scans
taken with a 40× objective and were analyzed using a Zeiss Pascal
confocal microscope and the manufacturer's software (Oberkochen,
Germany). Error bars indicate s.e.m., and the statistics were performed
using Student's t test.

Western blot analysis

To assess the expression of Rsk2 and phospho-Rsk, embryonic
cortical tissue was rinsed twice in ice-cold phosphate-buffered saline
(PBS) and digested in lysis buffer containing protease inhibitors
(Roche). To assess the efficacy of Rsk2 shRNA to knockdown
overexpressed Rsk2, HEK293 cells were cotransfected with mouse
HA-Rsk2 and either non-silencing shRNA or Rsk2 shRNA. 30 μg of
protein lysates was run on SDS-PAGE, and Western blots were
performed as described (Barnabé-Heider et al., 2005; Dugani et al.,
2009; Gauthier-Fisher et al., 2009). Blots were reprobed for ERK1/2 as
a loading control. The primary antibodies were rabbit anti-Rsk2
(1:200; Santa Cruz), rabbit anti-phospho-Rsk (Ser227; 1:200; Santa
Cruz), anti-HA (1:1000; Hospital for Sick Children Core Facility,
Toronto), and rabbit anti-Erk (1:3000; Santa Cruz). Secondary
antibodies were HRP-conjugated goat anti-mouse or anti-rabbit
(1:10,000; Boehringer Mannheim). Densitometry was carried out
using Image J software, and the density of HA-Rsk2 was expressed
relative to Erk expression obtained by reprobing the same blot.

Results

Rsk2 is present and active in embryonic cortical radial precursor cells

To address a potential role for Rsk2 during cerebral cortex
development, we first determined its timecourse of expression in the
embryonic cortex. To do this, we isolated cortices at timepoints ranging
from embryonic days 12–13 (E12–13), when the cortex is largely
comprisedof proliferatingprecursors, until postnatal day2 (P2),when it
also contains postmitotic neurons and glial cells. Western blot analysis
of tissue lysates with an antibody that recognizes both the unphos-
phorylated and the activated, phosphorylated forms of Rsk2 demon-
strated that this protein was present at the highest levels at the earliest
timepoints examined, and that its levels decreased substantively by P2
(Fig. 1A). To determine if Rsk2 was active, we performed a similar
analysiswith an antibody that recognizes only the phosphorylated form
of Rsk. Western blots revealed that phospho-Rsk levels were highest at
E12–13, and that the amount of phospho-Rsk decreased coincidentally
with the decrease in Rsk2 levels (Fig. 1B).

The decrease in levels of Rsk2 coincides temporally with the
differentiation of cortical precursors into neurons and glial cells. To
ask if, as suggested by these findings, Rsk2 was expressed in precursor
cells and/or their progeny in vivo, we performed immunocytochemistry
for Rsk2 on the E13.5 embryonic cortex, double-labelling sections with
an antibody for the proliferation marker Ki67 to identify proliferating
precursor cells. This analysis (Fig. 1C) demonstrated that Rsk2 was
expressed in Ki67-positive cells of the ventricular zone/subventricular
zone (VZ/SVZ) which contains various precursor populations. In these
cells, Rsk2 immunoreactivity was primarily localized to the cell soma,
with some immunoreactivity in nuclei, consistent with its known
subcellular localization (Anjum and Blenis, 2008). Rsk2 was also
expressed in cells that had migrated out of the VZ/SVZ into the cortical
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mantle, consistentwith expression inpostmitoticneurons, aspreviously
reported (Zeniou et al., 2002; Kohn et al., 2003). Detectable Rsk2
immunoreactivity was decreased at later embryonic timepoints,
consistent with the Western blot analysis (data not shown).

To ask about a potential role for Rsk2 in cortical precursors, we
cultured primary cells from E12–13 cortex, and plated them in the
presence of FGF2. Upon plating, these cells are almost all dividing,
nestin-positive radial precursor cells. Over the next 1–7 days in culture,
these cells will exit the cell cycle and sequentially differentiate into
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that expressed this kinase, cultures were immunostained for Rsk2 and
the precursormarker nestin or the proliferationmarker Ki67. At 2 days,
Rsk2 was expressed in virtually all nestin-positive, Ki67-positive
precursors in these cultures (Fig. 2B). Some Rsk2 was present in the
cytosol of these precursors, but much of it was localized to nuclei,
potentially because cells are cultured in saturating FGF2, and Rsk
proteins translocate to the nucleus when activated (Anjum and Blenis,
2008). Support for this idea was obtained by immunostaining for
phospho-Rsk and nestin; activated Rsk was detectable in the nuclei of
almost all nestin-positive precursors (Fig. 2C).

Toaskwhether Rsk2was alsopresent and active in the differentiated
progeny of cortical precursors, we immunostained cultures for Rsk2
or phospho-Rsk and the neuronal marker βIII-tubulin, the astrocyte
marker GFAP or the early oligodendrocyte marker A2B5 at 3, 5 and
7 days, respectively. This analysis revealed detectable expression of
both Rsk2 and phospho-Rsk in almost all of these differentiated cells
(Fig. 2D, data not shown), although expression was apparently lower
than in cortical precursors, consistent with the in vivo timecourse
(Figs. 1A, B).

Decreased levels of Rsk2 disrupt neurogenesis in cultured cortical
precursors

Thesedatademonstrated that Rsk2 is expressed andactive in cortical
precursor cells. We therefore asked whether Rsk2 is essential for the
genesis of neurons from cortical precursors. To do this, we utilized 3
different shRNA plasmids to knockdown endogenous Rsk2 mRNA. As a
control,weutilized an shRNAagainst amismatchedmouse sequence. To
confirm the efficacy and specificity of these shRNAs, we cotransfected
them into HEK293 cells with a plasmid encoding an HA-tagged form of
murine Rsk2, and then analyzed these cells 2 days later by Western
blotting for the HA tag. This analysis (Fig. 3A) demonstrated that all
three shRNAs were able to decrease the expression of the HA-tagged
murine Rsk2, and densitometry showed that the approximate level of
knockdown was 60–80% (Fig. 3A) in each case.

Having established the efficacy of these shRNAs, we askedwhether
Rsk2 was essential for normal cortical precursor development. To do
this, we cotransfected cultured cortical precursors with a plasmid
encoding nuclear EGFP and either the control shRNA or one of the
three Rsk2 shRNAs. Initially, we examined cell survival by immunos-
taining these cultures for EGFP and quantifying the percentage of
EGFP-positive transfected cells with condensed, fragmented nuclei.
We have previously shown that this is an accurate measurement of
apoptosis in cultured cortical precursors, and that it gives results
similar to those obtained by immunostaining for the apoptotic marker
cleaved caspase-3 (Bartkowska et al., 2007; Dugani et al., 2009). This
analysis demonstrated that Rsk2 knockdown had no effect on cell
survival at either 2 (Fig. 3B) or 5 (Fig. 3C) days in culture. We then
askedwhether Rsk2 knockdown had any effect on cell proliferation by
Fig. 3. Rsk2 knockdown decreases the genesis of neurons and maintains radial precursors in
typemouse Rsk2 and a control non-silencing shRNA, or one of three Rsk2 shRNAs (shRNA-1, 2
The graph on the right shows quantification of two similar experiments where the blots w
densitometry. Numbers represent the relative HA-Rsk2/Erk ratio normalized to cells transf
plasmids encoding nuclear EGFP, to identify transfected cells, and the control shRNA, or one
(B) or 5 days (C), immunostained for EGFP and counterstained with Hoechst 33258 to ana
Results are pooled data from 3 independent experiments. Error bars represent s.e.m. (D) Fl
(green) and Ki67 (red). Arrows denote double-labelled cells, while the arrowhead indica
percentage of EGFP-positive cells that were also positive for Ki67 cells in experiments simila
independent experiments. Error bars denote s.e.m. (F) Fluorescence photomicrographs of cor
denotes a double-labelled cell, while arrowheads indicate cells that are only positive for EG
relative percentage of EGFP-positive cells that were also positive for βIII-tubulin after 5 day
(considered as 100%). Graphs represent combined data from 3 independent experiments
transfected cultures. (H) Quantification of cortical precursors immunostained for EGFP, to d
experiments similar to that shown in F. Results are expressed as the percentage of EGFP-p
independent experiments. Error bars denote s.e.m. *pb0.05 relative to control shRNA-transfe
cells after 5 days in culture, in experiments similar to that shown in F, where cortical prec
combined data from 4 independent experiments. Error bars denote s.e.m. **pb0.01 relative
immunostaining similar transfected cultures for EGFP and the
proliferation marker Ki67 (Fig. 3D). Quantification demonstrated
that Rsk2 shRNA knockdown had no effect on the percentage of Ki67-
positive, EGFP-positive precursors at 2 days in culture (Fig. 3E).

Having established that Rsk2 knockdown had no effect on cell
survival or proliferation in these cultures, we asked whether it
affected neurogenesis. To do this, we cotransfected cortical precursors
with plasmids encoding EGFP and one of the three shRNAs, and then
immunostained the cultures at 5 days for the early neuronal marker
βIII-tubulin (Fig. 3F). Quantification revealed that all three of the Rsk2
shRNAs decreased the percentage of neurons by approximately 20–
30% (Fig. 3G). Since cell survival is unaffected at this timepoint
(Fig. 3C), then these data imply that there must be a commensurate
increase in the relative proportion of precursors and/or another
differentiated cell type in these cultures. To address this issue, we
immunostained cultures for the radial precursor marker Pax6 at
5 days. Quantification demonstrated that the proportion of radial
precursors increased from approximately 25% to 40–45% in these
cultures (Fig. 3H). Since the proportion of neurons in these cultures
decreases from approximately 80% to 60% when Rsk2 is knocked-
down (Fig. 3I), then this indicates that when Rsk2 is knocked-down
radial precursors are maintained at the expense of newly-born
neurons.

Finally, to ensure that this decrease in neurogenesis was due to
knockdown of Rsk2, we performed rescue experiments. Cortical
precursors were cotransfected with EGFP and the control or Rsk2
shRNAs, along with an expression construct encoding HA-tagged
Rsk2. As a control, we used the empty vector instead of HA-Rsk2.
Immunostaining five days later revealed that expression of the HA-
Rsk2 construct, but not the empty vector, was able to completely
rescue the decrease in transfected βIII-tubulin-positive neurons
following knockdown of Rsk2 (Fig. 3I).

Rsk2 knockdown increases the number of proliferating radial precursor
cells in vivo

The in vitro data suggest that Rsk2 serves to promote the genesis of
neurons from cortical radial precursor cells during embryogenesis. To
test this hypothesis in vivo, we acutely manipulated precursors in the
VZ/SVZ of the E13/14 cortex in vivo using in utero electroporation. We
have previously shown that 1 day following electroporation, all of the
transfected cells reside in the VZ/SVZ, and most of them are
proliferating radial precursors (Paquin et al., 2005; Bartkowska et
al., 2007; Gauthier-Fisher et al., 2009). Over the next few days, many
of these transfected precursor cells differentiate into neurons and
migrate to the cortical plate, while, of those that remain, many
differentiate into astrocytes and some into oligodendrocytes during
late embryogenesis and early neonatal life. We therefore coelectro-
porated plasmids encoding nuclear-localized EGFP and Rsk2 shRNAs
culture. (A) Western blot analysis of HEK293 cells cotransfected with HA-tagged wild
and 3). Themembranewas probed for the HA tag to detect the transfectedmouse Rsk2.
ere reprobed for total Erk to monitor protein loading, and then analyzed by scanning
ected with control shRNA. (B–I) Cultured cortical precursors were cotransfected with
of the three Rsk2 shRNAs. (B,C) Quantification of cortical precursors cultured for 2 days
lyze the percentage of transfected cells with condensed, fragmented apoptotic nuclei.
uorescence photomicrographs of cortical precursors immunostained at 5 days for EGFP
tes a cell that is only positive for EGFP. Scale bar=50 μm. (E) Quantification of the
r to that shown in D, after 2 days in culture. The graphs represent combined data from 3
tical precursors immunostained at 5 days for EGFP (green) and βIII-tubulin (red). Arrow
FP. Scale bar=50 μm. (G) Quantification of cultures similar to that shown in F for the
s in culture, normalized to sister cultures that were transfected with the control shRNA
. Error bars denote s.e.m. *pb0.05, **pb0.01, ***pb0.001 relative to control shRNA-
etect transfected cells, and the radial precursor marker Pax6 after 5 days in culture, in
ositive cells that were also positive for Pax6. Graphs represent combined data from 3
cted cultures. (I) Quantification of the percentage of EGFP-positive, βIII-tubulin-positive
ursor cells were also transfected with HA-Rsk2 or empty vector. The graphs represent
to control shRNA-transfected cultures.
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into cortical precursors lining the lateral ventricles of E13/14 embryos,
and asked whether Rsk2 knockdown had any effect on these
precursor cells. Initially, we examined cell proliferation; brains were
coronally sectioned 3 to 4 days post-electroporation and immunos-
tained for EGFP and the proliferation marker Ki67. Confocal
microscopy and quantification of these sections demonstrated a
significant increase in the percentage of Ki67-positive cells that were
transfected with Rsk2 shRNA versus control shRNA at 3 days post-
electroporation (Figs. 4A–C). Similar results were obtained at 4 days
post-electroporation, with 13% Ki67-GFP-positive for the control
compared to 19%Ki67-GFP-positive cellswith Rsk2 shRNA-transfected
precursor cells. To confirm this finding, we electroporated embryos at
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E13/14 with EGFP and control or Rsk2 shRNA, injected the mothers
with BrdU 3 days post-electroporation, and then analyzed the
embryonic cortices 24 h later. Double-labelling for BrdU and EGFP
demonstrated that the proportion of precursor cells entering S-phase
over the previous 24 h was increased almost two-fold when Rsk2 was
knocked-down (Fig. 4D).

To define the population of precursors that was maintained when
Rsk2 was knocked-down, we performed similar experiments, and
immunostained cortical sections 4 days post-electroporation for the
radial precursor transcription factor Pax6, or for the intermediate
progenitor marker Tbr2. This analysis revealed a 1.5-to-2-fold
increase in the percentage of Pax6 positive precursor cells when
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Rsk2 was knocked-down (Figs. 4E, F). By contrast, the percentage of
Tbr2-positive intermediate progenitors was unaffected, although
there was a trend towards a decrease in their numbers (Fig. 4G).
Since intermediate progenitors are biased neuronal progenitors
(Noctor et al., 2004; Gal et al., 2006; Attardo et al., 2008), then
these findings are consistent with the conclusion that Rsk2 knock-
down specifically promotes maintenance of proliferating radial
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precursors, potentially by inhibiting their differentiation along a
neuronal pathway.

Rsk2 is essential for cortical neurogenesis, but not astrogenesis

To askwhether Rsk2 knockdowndecreases neurogenesis in vivo, as
it does in culture, we performed similar experiments, electroporating
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Fig. 5. Rsk2 knockdown decreases neurogenesis in vivo. Precursor cells of the embryonic cortex were transfected by in utero electroporation at E13/14 with plasmids encoding
nuclear EGFP and a control shRNA or Rsk2 shRNAs, and then analyzed 3 or 4 days later. (A) Confocal micrographs of cortical sections 3 days post-electroporation (3DPE) that were
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355C.B. Dugani et al. / Developmental Biology 347 (2010) 348–359
E13/14 cortices with constructs encoding nuclear EGFP and either
control or Rsk2 shRNAs and analyzing them 3 or 4 days later (Fig. 5A).
Analysis of coronal sections through these cortices demonstrated a
decrease of as much as 43% in the percentage of EGFP-positive cells
that had migrated from the VZ/SVZ to the cortical plate (which
Fig. 4. Rsk2 knockdown increases the number of proliferating radial precursor cells in vivo.
E13/14 with plasmids encoding nuclear EGFP and either a control shRNA or Rsk2 shRNAs, a
sections that were immunostained for EGFP (green) and the proliferation marker Ki67 (red).
subventricular zone; IZ, intermediate zone; CP, cortical plate. (B) High magnification confoca
cells, while arrowheads indicate cells that were only positive for EGFP. Scale bar=25 μm
experiments similar to that shown in B at 3 days post-electroporation (3DPE). The graphs
*pb0.05 relative to cortices electroporated with the control shRNA. (D) Quantification of the
pregnant mothers were injected with BrdU 3 days after their embryos were electroporated w
The graphs represent combined data from 5 brain sections per embryo and 2 embryos per con
shRNA. (E) High magnification confocal images of a section similar to those shown in (
bar=10 μm. (F) Quantification of the percentage of EGFP-positive cells also positive for Pax6
4 embryos per condition. Error bars denote s.e.m., **pb0.01 relative to cortices electroporated
positive for Tbr2 4 days following electroporation. The graphs represent combined data fro
contains newly-born cortical neurons) when Rsk2 expression was
knocked-down (Fig. 5B). Since cortical precursors normally generate
neurons in the VZ/SVZ, and these newly-born neurons thenmigrate to
the cortical plate, then this decrease suggests that fewer neurons are
generated when Rsk2 is knocked-down. To test this idea, we
Precursor cells of the embryonic cortex were transfected by in utero electroporation at
nd then analyzed 3 or 4 days later. (A) Confocal micrographs of electroporated cortical
The right panels show themerged image. Scale bar=100 μm. VZ, ventricular zone; SVZ,
l images of a section similar to that shown in A, for Ki67. Arrows denote double-labelled
. (C) Quantification of the percentage of EGFP-positive cells also positive for Ki67 in
represent combined data from 3–5 embryos per condition. Error bars denote s.e.m.,

percentage of EGFP-positive cells that were also positive for BrdU in experiments where
ith control shRNA or Rsk2 shRNA-3, and embryonic cortices were analyzed 1 day later.
dition. Error bars denote s.e.m., *pb0.05 relative to cortices electroporated with control
A) for the radial precursor marker Pax6. Arrows denote double-labelled cells. Scale
in experiments similar to that shown in E. The graphs represent combined data from 3–
with the control shRNA. (G) Quantification of the percentage of EGFP-positive cells also

m 3–4 embryos per condition. Error bars denote s.e.m. pN0.05.
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immunostained these sections for the neuron-specific protein HuD
(Figs. 5A, C). Confocal microscopy demonstrated that fewer HuD-
positive neurons were generated when Rsk2 was knocked-down with
either of two different Rsk2 shRNAs (Figs. 5D, E). The decrease in the
percentage of neurons was comparable to the decrease in cells within
the cortical plate; at 3 days, the decreasewas asmuch as 75%, while by
4 days, it was approximately 30%. Since no cells expressing HuD were
mislocalized to the VZ/SVZ, then these data indicate that the primary
effect of Rsk2 knockdown was on the genesis of neurons, not on the
migration of those newly-born neurons.

Together, these data indicate that Rsk2 is essential for efficient
cortical neurogenesis, and that when it is knocked-down, many
cortical precursors do not differentiate appropriately into neurons, but
instead remain as cycling radial precursors. To ask whether Rsk2 was
also essential for astrocyte differentiation, we first performed experi-
ments in culture. Cultured cortical precursorswere cotransfected with
constructs encoding nuclear EGFP and either control shRNA or Rsk2
shRNA, and then treated the next day with ciliary neurotrophic factor
(CNTF), which induces astrogenesis (Bonni et al., 1997; Rajan and
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represents combineddata from three independent experiments, and error bars are s.e.m. (C)Con
the cortexwas analyzed 10 days later at P3. Corticeswere electroporatedwith plasmids encodin
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*pb0.05, **pb0.01.
McKay, 1998; Barnabé-Heider et al., 2005). The cultures were then
immunostained for the astrocyte marker GFAP after 5 days (Fig. 6A).
Quantification demonstrated that the knockdown of Rsk2 had no
significant effect on the generation of astrocytes, and that the
percentage of GFAP-positive cells ranged between 35% and 45% in
cells transfected with either the scrambled shRNA or Rsk2 shRNAs
(Fig. 6B). We then asked the same question in vivo, using in utero
electroporation to cotransfect E13/14 cortices with plasmids encoding
nuclear GFP and either control shRNA or Rsk2 shRNA, allowing the
animals to develop until P3, at which point astrogenesis is ongoing.
Immunostaining of coronal sections for the astrocyte marker GFAP
(Fig. 6C) revealed no differences in the percentage of GFAP-positive
cells that were transfected with Rsk2 versus control shRNAs (Fig. 6D).
Thus, while Rsk2 is essential for efficient neurogenesis, it is apparently
dispensable for normal astrogliogenesis.

These data demonstrate that Rsk2 knockdown causes decreased
neurogenesis, but has no effect on the proportion of astrocytes,
suggesting that even after birth, Rsk2 knockdown might increase the
proportion of radial precursors that are present. To address this
10

0

20

30

40

B

D
%

 G
F

A
P

-E
G

F
P

+ 
ce

lls
 /  

E
G

F
P

+ 
ce

lls

sh
RNA1

sh
RNA2

Ctrl

erge

0

20

40

60

80

100

%
 G

F
A

P
-E

G
F

P
+ 

ce
lls

 / 
E

G
F

P
+ 

ce
lls

sh
RNA1

sh
RNA2

Ctrl

sh
RNA3

erge 50

r pool in the neonatal brain. (A) Cortical precursors cotransfectedwith plasmids encoding
and immunostained for EGFP (green) and the astrocytemarker GFAP (red). Arrows denote
e cells that expressed GFAP in experiments similar to that shown in panel A. The graph
focalmicrographsof a cortical sectionwhereelectroporationwasperformedatE13/14and
gnuclear EGFP and a control shRNA or Rsk2 shRNAs, and immunostained for EGFP (green)
ed cellwhile the arrowhead indicates a cell that is positive for only EGFP. Scale bar=10 μm.
nts similar to that in panel C. The graph represents combined data from 3–4 animals per
twere alsopositive for Pax6 in theVZ/SVZof cortices electroporated as for the experiments
raph represents combined data from 3–4 animals per condition. Error bars denote s.e.m.



357C.B. Dugani et al. / Developmental Biology 347 (2010) 348–359
possibility, we immunostained sections from the same electroporated
P3 cortices for the radial precursormarker Pax6. This analysis (Fig. 6E)
showed that Rsk2 knockdown increased the proportion of EGFP-
positive radial precursors in the postnatal VZ/SVZ approximately 3-
fold. Thus, radial precursors that would normally have generated
neurons during embryogenesis are not ultimately subverted to a glial
fate by Rsk2 knockdown, but are instead maintained as radial
precursors at least until the neonatal period.

Discussion

The results from this study support a number of major conclusions.
First, we show that Rsk2 is expressed in embryonic cortical precursors
and their neuronal and glial progeny, and that both Rsk2 and activated
phosphorylated Rsk decrease during cortical development, coinci-
dentally with precursor differentiation. Second, our experiments
using shRNAs to acutely knockdown Rsk2 in culture show that Rsk2 is
not required for precursor survival, but that it is instead required for
radial precursors to efficiently differentiate into neurons. Third, our
in utero electroporation experiments confirm that Rsk2 is essential for
radial precursors to generate neurons in vivo, and show that when its
levels are decreased, a greater percentage of precursors are main-
tained as proliferating radial precursors throughout embryonic
development. Finally, we show that both in culture and in vivo,
acute knockdown of Rsk2 has no apparent effect on the genesis of
astrocytes. Thus, our data indicate that Rsk2 is essential for radial
precursors to exit the cell cycle and generate neurons, and that Rsk2
therefore likely provides a key downstream target for extracellular
cues such as growth factors that regulate the timing and number of
neurons that are generated. Moreover, these findings suggest that the
dysregulated neurogenesis seen when levels of Rsk2 are decreased
may explain the neuroanatomical and cognitive deficits observed in
individuals with CLS, providing support for the idea that some genetic
disorders that cause cognitive dysfunction do so by perturbing neural
precursor development.

During embryonic cortical development, various intrinsic and
extrinsic factors regulate the genesis of neurons (Miller and Gauthier,
2007; Corbin et al., 2008; Rakic, 2009). We and others have previously
provided evidence that one way growth factors regulate neurogenesis
is via the SHP2–MEK–Erk–C/EBP pathway (Ménard et al., 2002;
Paquin et al., 2005; Liu et al., 2006; Gauthier et al., 2007; Samuels
et al., 2008). In particular, neurogenesis was decreased in cortical
precursors following SHP2 knockdown (Gauthier et al., 2007), or
expression of dominant-negative MEK (Ménard et al., 2002) and mice
with a conditional loss of Erk in the cortex show blunted neurogenesis
(Samuels et al., 2008). Moreover, the transcription factor C/EBP was
shown to be essential for efficient cortical neurogenesis both in
culture and in vivo, and phosphorylation of C/EBP downstream of the
MEK–Erk pathway was essential for C/EBP to enhance neurogenesis
(Ménard et al., 2002; Paquin et al., 2005). Intriguingly, the neurogenic
bHLH neurogenin has also recently been shown to be downstream of
Erk5 (Cundiff et al., 2009), raising the possibility that the MEK–Erk
pathway activates multiple transcription factors to promote the
genesis of neurons from neural precursors.

While Erk can itself directly phosphorylate and regulate transcrip-
tion factors that are important for cortical development, our data
indicate that it also likely regulates neurogenesis by phosphorylating
and activating Rsk2 (Roux et al., 2003; Kang et al., 2007). We show that
in culture, cortical precursors express Rsk2, and that much of this is
activated and localized to the nucleus, likely as a consequence of their
exposure to saturating quantities of FGF2, a growth factor that we have
previously shown activates the MEK–Erk pathway in these cells
(Barnabé-Heider and Miller, 2003). Our in vivo Western blot and
immunocytochemical analyses indicate that Rsk2 is also expressed in
dividingprecursors in the embryonic cortex and that at least a fraction of
this Rsk2 is phosphorylated and activated under physiological condi-
tions. However, in contrast to the culture situation, much of this Rsk2 is
localized to the cytosol of precursors in vivo, with only some of it being
nuclear-localized. Since Rsk proteins translocate to the nucleus when
activated (Anjum and Blenis, 2008), then these findings are consistent
with the concept that activation of Rsk2 is not saturating in vivo, and that
small changes in growth factors within the embryonic environment
might cause large changes in cortical precursor biology in vivo, in part by
acting via signalling kinases such as Rsk2.

How then does Rsk2 promote neurogenesis? We propose that it
does so by phosphorylating key transcription factors and potentially
by directly regulating chromatin structure. In this regard, we have
previously shown that the Rsk phosphorylation site on C/EBP is
important for its ability to enhance transcription of neuron-specific
genes such as Tα1-tubulin (Ménard et al., 2002; Paquin et al., 2005). A
second potential Rsk2 neurogenic target is ATF5, a transcription factor
that is highly expressed in cortical precursors, and that functions to
inhibit differentiation (Angelastro et al., 2003, 2005; Mason et al.,
2005). While Rsk2 has not been shown to phosphorylate ATF5, it
directly phosphorylates the related family member ATF4 to regulate
osteoblast differentiation (Yang et al., 2004). With regard to the
potential regulation of chromatin structure, Rsk2 has been shown to
interact with and phosphorylate the transcriptional coactivator CBP
and to directly regulate its histone acetylase activity (Merienne et al.,
2001). Since CBP-mediated histone acetylation is essential for cortical
precursors to express lineage-specific genes and differentiate into
neurons and glia (Wang et al., 2010), then a MEK–Rsk2–CBP pathway
would provide one way that growth factors could globally regulate
important neurogenic genes.

What growth factors might utilize this pathway to regulate
neurogenesis? PDGF enhances cortical neurogenesis (Williams et al.,
1997) at least in part via a MEK–C/EBP pathway (Ménard et al., 2002;
Paquin et al., 2005). In addition, BDNF,which binds to the TrkB receptor,
causes increased cortical neurogenesis in vivo, while knockdown of the
TrkB receptor decreases neurogenesis (Bartkowska et al., 2007). Since
both PDGF and BDNF bind to receptor tyrosine kinases, and since the
MEK–Erk pathway is robustly activated in cortical precursors by both of
these growth factors (Ménard et al., 2002; Barnabé-Heider and Miller,
2003), then we suggest that Rsk2 likely provides a downstream
proneurogenic convergence point for these and many other growth
factors that are encountered within the cortical environment.

While this model focuses on a proneurogenic action for Rsk2, our
data also show that Rsk2 knockdown maintains radial precursors in a
proliferating precursor state. One explanation for this phenotype is that
theprecursor phenotype is thedefault state and that in the absence of an
Rsk2-mediated neurogenic signal, precursors aremaintained. However,
an alternative, and not mutually-exclusive explanation is that Rsk2 is a
direct negative regulator of radial precursor proliferation, and thatwhen
it is knocked-down, precursors continue to cycle, something that is
incompatible with neurogenesis. Our data do not distinguish these two
possibilities, and it is even likely that Rsk2 may act in both ways, given
the obligate coupling between cell cycle exit and expression of a
neuronal phenotype.

Findings reported here provide additional support for the idea that
genetic disorders that cause cognitive dysfunction do so, at least in
part, by perturbing neural precursor development. Individuals with
loss-of-function mutations in Rsk2 that are diagnosed with CLS
display thinning of the corpus callosum, asymmetry of the lateral
ventricles, and smaller brain volumes (Wang et al., 2006; Kesler et al.,
2007), in addition to cognitive deficits. While the brains of Rsk2−/−
mice have not been characterized extensively, these mice also display
cognitive impairments (Dufresne et al., 2001; Poirier et al., 2007) that
are thought to be due to a necessity for Rsk2 in neuronal circuit
formation/function (Fisher et al., 2009). However, our findings
indicate that these behavioural abnormalities could also be explained
by deficits in neurogenesis within the developing cortex and perhaps
in other regions of the brain. Intriguingly, Rsk2−/− mice have been
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shown to display dysregulation of the CNS dopaminergic system
(Marques-Pereira et al., 2008), a problem that could potentially arise
because of perturbations in genesis of dopaminergic neurons.

The perturbations in cell genesis reported here for Rsk2 knockdown
have also been reported formutations in signallingproteins upstreamof
Rsk2. For example, SHP2 mutations cause Noonan syndrome, where
approximately half of individuals show some cognitive dysfunction, and
when SHP2 mutations are knocked-in to the mouse SHP2 gene, this
causes enhanced neurogenesis and decreased astrogenesis (Gauthier
et al., 2007). Costello syndrome, which is associated with mental
retardation, is caused in part by hyperactivation of H-Ras, and Costello
syndrome H-Ras mutants cause aberrant differentiation and prolifera-
tion of cortical precursors and their glial progeny (Paquin et al., 2009).
Haploinsufficiency for CBP causes Rubinstein–Taybi syndrome and
when this haploinsufficiency is modeled in mice, it causes a global
decrease in cortical precursor differentiation and behavioural deficits
within days of birth (Wang et al., 2010). Thus, while previous studies
have largely focused upon how these human mutations affect neural
circuit function in the adult brain (Zeniou et al., 2002; Hanauer and
Young, 2002; Wang et al., 2006; Poirier et al., 2007), this body of work
argues thatmany of thesemutations also dysregulate embryonic neural
precursors at much earlier developmental stages. Such findings do not
negate the impact of thesemutations upon neural circuit establishment
and function. Instead, these studies define an additional pathological
mechanism, and perhaps even more intriguingly, suggest that human
mutations that cause cognitive dysfunctionmay also define previously-
unsuspectedpathways that are important for neural precursors, thereby
providing a novel and unbiased window into neural development.
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